DOI QR코드

DOI QR Code

고온기 토마토 재배시 적정 측지관리방법 구명

Optimum Management of Tomato Side Stems Pruning in Summer Cultivation

  • 김성은 (상명대학교 식물식품공학과) ;
  • 김영식 (상명대학교 식물식품공학과)
  • Kim, Sung Eun (Department of Plant and Food Sciences, Sangmyung University) ;
  • Kim, Young Shik (Department of Plant and Food Sciences, Sangmyung University)
  • 투고 : 2014.06.05
  • 심사 : 2014.07.22
  • 발행 : 2014.09.30

초록

고온기 시설내에서 토마토를 재배할 때 최적의 측지관리방법을 구명하고자 본 실험을 수행하였다. 유니콘(몬산토 코리아, 한국)을 접수로, B-블로킹(다끼이종묘, 일본)을 대목으로 접목한 방울토마토 접목묘를 실험에 사용하였다. 배지는 코이어 자루배지를 사용하였고, 급액은 타이머 제어법으로 제어하였다. 측지를 전부 제거한 처리(ACUT), 화방 아래 측지의 잎을 2매 남기는 처리(PCUT) 및 모든 측지의 잎을 2매 남기는 처리(LEFT) 등 모두 3가지 방법으로 처리하였다. 연구결과, 토마토의 영양과잉으로 인한 이상경 발생시에는 측지를 유지하여 영양생장으로 많은 에너지가 사용되도록 하면 해결되는 것으로 나타났으며, 적절한 측지관리로 작물의 생장상도 재배자의 요구에 맞게 조절할 수 있을 것으로 사료되었다. 본엽과 측지의 잎들에 대한 광합성 속도는 차이가 없었으며, 처리에 따른 엽면적의 차이만 있었다. 따라서 처리간 엽면적의 차이에 의해 광합성 산물 총량의 차이가 발생하고, 이는 수확량에 영향을 주는 것을 확인하였다. 또한 고온기 토마토 재배에서 5단 이하의 단기밀식재배의 경우에는 측지를 모두 제거하는 것이 수확량과 수확속도에 효과적이었으나, 5단 이상의 장기재배에서는 모든 측지의 잎 2매를 남겨서 관리하는 것이 작물의 생육과 수확량에 효과적이었다.

This research was conducted to establish appropriate methods to prune tomato side stems during summer. Cherry tomatoes "Unicorn" (Monsanto Korea, Korea) were grown in the coir based growing medium, and irrigation was controlled time based system. There were three pruning treatments: 1) removing all side stems (ACUT), 2) remaining two leaves on the side stems right below any cluster (PCUT), and 3) remaining two leaves on all side stems (LEFT). Experimental results showed that the occurrence of swollen stems, a symptom of nutrient excess, was influenced by side stem pruning due to blocking of consumption of photosynthetic products. The photosynthetic rate was not different between leaves on main stem and those on side shoots. Therefore the differences in the total amounts of photosynthetic products seemed to come out from the differences in leaf areas on each treatments, influencing on fruit yield difference. The yields and harvesting rates were better in ACUT treatment when tomato plants were harvested until $5^{th}$ cluster, however tomato yield was higher in LEFT treatment when more then $5^{th}$ clusters were harvested.

키워드

참고문헌

  1. ANON. 1972. Glasshouse vegetables. Rep. Glasshouse Crops Res. Inst. 1971:26.
  2. Besford, R.T. 1993. Photosynthetic acclimation in tomato plants grown in high $CO_2$. Vegetatio 104: 441-448.
  3. Cockhull, K.E., C.J. Graves, and C.R.J. Cave. 1992. The influence of shading on yield of glasshouse tomatoes. J. Hortic. Sci. 67: 11-24. https://doi.org/10.1080/00221589.1992.11516215
  4. Cockshull, K.E. and L.C. Ho. 1995. Regulation of tomato fruit size by plant density and truss thinning. Journal of Horticultural Science 70:395-407. https://doi.org/10.1080/14620316.1995.11515309
  5. De Koning, A.N.M. 1994. Development and dry matter distribution in glasshouse tomato: a quantitative approach. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands.
  6. Dorais, M. and A. Gosselin. 2002. Physiological response of greenhouse vegetable crops to supplemental lighting. Acta Horticulturae 580:59-67.
  7. Guern, J. and M. Usciati. 1972. The present status of the problem of apical dominance In: Hormonal regulation in plant growth and development, (Ed. H. Kaldewey and Y. Vardar). Proc. Adv. Study Inst. Izmir 1971, pp. 383-400.
  8. Hao, X., A.B. Hale, and D.P. Ormrod. 1997. The effects of ultraviolet- B radiation and carbon dioxide on growth and photosynthesis of tomato. Canadian Journal of Botany 75:213-219. https://doi.org/10.1139/b97-022
  9. Heuvelink, E. 1996. Dry matter partitioning in tomato: validation of a dynamic simulation model. Ann. Bot. 77, 71-80. https://doi.org/10.1006/anbo.1996.0009
  10. Heuvelink, E. and M. Dorais. 2005. Crop growth and yield, pp.85-145. In: Heuvelink, E. Crop production science in horticulture series: tomatoes. CABI, UK.
  11. Ho, L.C. 2004. The contribution of plant physiology in glasshouse tomato soilless culture. Acta Horticulturae 648: 19-25.
  12. Kim, S.E., M.Y. Lee, Y.S. Kim. 2013. Characterization of photosynthetic rates by tomato leaf position. Kor. J. Hort. Sci. Technol. 31:146-152.
  13. Kowalska, I. 2004. The effect of sulphate levels in the nutrient solution on mineral composition of leaves and sulphate accumulation in the root zone of tomato plants. Folia Horticulturae 16: 3-14.
  14. Leutscher, K.J., E. Heuvelink, R.A. Van de Merwe, and P.C. Van de Bosch. 1996. Evaluation of tomato cultivation strategies: uncertainty analysis using simulation. In: Lokhorst, C., A.J. Udink ten Cate, and A.A. Dijkhuizen.(eds) Information and communication technology applications in agriculture: State of the art and future perspectives. Proceedings of the 6th international congress for computer technology in agriculture (ICCTA '96). VIAS, Wageningen, The Netherlands. pp. 492-497.
  15. Lopez, J., M. Dorais, N. Tremblay, and A. Gosselin. 1998. Effects of varying sulfate concentrations and vapor pressure deficits (VPD) on greenhouse tomato fruit quality, foliar nutrient concentration and amino acid components. Acta Hort. 458: 303-310.
  16. Nederhoff, E.M. 1994. Effects of CO2 concentration on photosynthesis, transpiration, and production of greenhouse fruit vegetable crops. Dissertation, Wageningen Agricultural Uinversity, Wageningen, The Netherlands, pp. 213.
  17. Osaki, M., T. Shinano, T. Kaneda, S. Yamada, and T. Nakamura. 2001. Ontogenetic changes of photosynthetic and dark respiration rates in relation to nitrogen content in individual leaves of field crops. Photosynthetica 39:205-213. https://doi.org/10.1023/A:1013774908492
  18. Papadopoulos, A.P., X. Hao, J.C. TU, and J. Zheng. 1999. Tomato production in open or closed rockwool culture systems with NFT or rockwool nutrient feedings. Acta Hort. 481: 89-96.
  19. Pivot, D., A. Reiset, and J.M. Gillioz. 1999. Tomates en serre: substrats rutiliss, solutions recycles. Rev. suisse Vitic. Arboric. Hortic. 31: 265-269.
  20. Peet, M.M. and G. Welles. 2005. Greenhouse tomato production, pp.257-304. In: Heuvelink, E. Crop production science in horticulture series: tomatoes. CABI, UK.
  21. Phillips, I.D.J. 1975. Apical dominance. Ann. Rev. Plant Physiol. 26: 341. https://doi.org/10.1146/annurev.pp.26.060175.002013
  22. Resh, H.M. 2013. Plant culture, pp.410-427. In: Resh, H.M. Hydroponic food production. CRC press, New York.
  23. Stanghellini, C., F.L.K. Kempkes, and P. Knies. 2003. Enhancing envirnmental quality in agriculthral systems. Acta Horticulturae 609: 277-283.
  24. Strack, Z. 1983. Photosynthesis and endogenous regulation of the source-sink relation in tomato plants. Photosynthetica 17:1-11.
  25. Terabayshi, S., A. Sugimoto, K. Ohshita, and T. Namiki. 1995. Relationship Between crease-stem abnormality and boron content in tomato plants cultured with high sulfate nutrient solution. Acta Horticulturae 396: 131-136.
  26. Tucker, D.J. 1976. Endogenous growth regulators in relation to side shoot development in the tomato. New Phytol. 77: 561-568. https://doi.org/10.1111/j.1469-8137.1976.tb04647.x
  27. Yelle, S. 1988. Acclimatation de Lycopersicon esculentum Mill. Aux hautes concentrations de l'atmosphere en bioxide de carbone. These de doctorat, Universite Laval, Quebec, Canada, pp.150.