DOI QR코드

DOI QR Code

Improvement of Capacitive Deionization Performance by Coating Quaternized Poly(phenylene oxide)

4급화 폴리페닐렌 옥시드 코팅을 통한 축전식 탈이온 성능 향상

  • Kim, Do-Hyeong (Department of Environmental Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Environmental Engineering, Sangmyung University)
  • Received : 2014.08.07
  • Accepted : 2014.08.23
  • Published : 2014.08.30

Abstract

In this study, an anion-exchange ionomer solution was developed by employing poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) as the base material for the improvement of the capacitive deionization (CDI) performances. It was found that prepared quaternized PPO (QPPO) exhibited excellent ion conductivity superior to that of a commercial anion-exchange membrane (AMX, Astom Corp., Japan) and also the electrochemical properties were shown to be comparable with each other. The CDI tests were conducted by employing the porous carbon electrode coated with the ionomer solution and the result showed the high salt removal efficiency of about 94.9%. By comparing the desalination efficiencies in conventional CDI, membrane CDI (MCDI) with a commercial anion-exchange membrane, and coated CDI (CCDI) employing the porous carbon electrode coated with QPPO, it was confirmed that CCDI shows the high salt removal performance improved by 52.1% and 18.3% compared with those of conventional CDI and MCDI, respectively.

본 연구에서는 축전식 탈이온 공정(capacitive deionization, CDI)의 성능을 개선하기 위해 poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)를 기저물질로 이용하여 코팅이 가능한 음이온교환 이오노머(quaternized PPO, QPPO) 용액을 제조하였다. 제조된 QPPO는 상용 음이온교환막(AMX, Astom Corp., Japan) 대비 우수한 이온전도도 특성을 나타내었으며 전기화학적 특성 또한 동등 수준임을 확인할 수 있었다. 다공성 탄소 전극에 이오노머 용액을 코팅하여 CDI 성능평가를 수행하였으며 그 결과 약 94.9%의 높은 염 제거 효율을 나타내었다. 기존의 CDI와 상용 음이온교환막을 결합한 membrane CDI (MCDI), QPPO가 코팅된 전극을 사용한 coated CDI (CCDI)의 탈염 성능을 비교한 결과 QPPO의 높은 이온선택성 및 낮은 이온 전달저항으로 CCDI가 기존의 CDI에 비해 52.1%, MCDI에 비해 18.3% 향상된 높은 염 제거 성능을 나타냄을 확인하였다.

Keywords

References

  1. J. H. Song, K. H. Yeon, and S. H. Moon "Migration phenomena of $Ni^{2+}$ through a cation exchange textile (CIET) in a continuous electrodeionization (CEDI)", Membrane Journal, 16, 77 (2006).
  2. J. H. Song and S. H. Moon "Principles and current technologies of continuous electrodeionization", Membrane Journal, 16, 167 (2006).
  3. M. K. Hong, S. D. Han, H. J. Lee, and S. H. Moon "A study on process performances of continuous electrodeionization with a bipolar membrane for water softening and electric regeneration", Membrane Journal, 17, 210 (2007).
  4. Y. J. Kim and J. H. Choi, "Selective removal of calcium ions from a mixed solution using membrane capacitive deionization system", Appl. Chem. Eng., 23, 474 (2012).
  5. T. J. Welgemoed and C.F Schutte, "Capacitive Deionization Technology$^{TM}$ : An alterative desalination solution", Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  6. J. H. Ryu, T. J. Kim, T. Y. Lee, and I. B. Lee, "A study on modeling and simulation of capacitive deionization process for waste water treatment", J. Taiwan. Inst. Chem. E., 41, 506 (2010). https://doi.org/10.1016/j.jtice.2010.04.003
  7. K. K. Park, J. B. Lee, P. Y. Park, S. W. Yoon, J. S. Moon, H. M. Eum, and C. W. Lee, "Development of a carbon sheet electrode for electrosorption desalination", Desalination, 206, 86 (2007). https://doi.org/10.1016/j.desal.2006.04.051
  8. C. M. Yang, W. H. Choi, B. W. Cho, W. I. Cho, K. S. Yun, and H. S. Han, "Desalination effects of capacitive deionization process with porous carbon-nano materials", J. Ind. Eng. Chem., 15, 294 (2004).
  9. C. M. Park and J. H. Choi, "Fabrication and electrochemical characterization of ion-selective composite carbon electrode coated with sulfonated poly(ether ether ketone)", Appl. Chem. Eng., 24, 247 (2013).
  10. J. W. Lee, H. I. Kim, H. J. Kim, H. S. Shin, J. S. Kim, B. I. Jeong, and S. G. Park, "Desalination effects of capacitive deionization process using activated carbon composite electrodes", J. Korean Electrochem. Soc., 12, 287 (2009). https://doi.org/10.5229/JKES.2009.12.3.287
  11. S. Shiraishi, H. Kurihara, H. Tsubota, A. Oya, Y. Soned, and Y. Yamada, "Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene", Electrochem. Solid. ST., 4, A5 (2001). https://doi.org/10.1149/1.1344276
  12. Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer" Water. Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  13. Y. Liu, L. Pan, X. Xu, T. Lu, Z. Sun, and H. C. Chua, "Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes", Electrochim. Acta, 130, 619 (2014). https://doi.org/10.1016/j.electacta.2014.03.086
  14. T. Xu, "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  15. Y. Tanaka, "Ion Exchange Membranes: Fundamentals and Application", Elsevier, Amsterdam (2007).
  16. M. S. Kang, Y. J. Choi, and S. H. Moon, "Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)", J. Membr. Sci., 207, 157 (2002). https://doi.org/10.1016/S0376-7388(02)00172-2
  17. D. H. Kim, J. H. Park, S. J. Seo, J. S. Park, S. Jung, Y. S. Kang, J. H. Choi, and M. S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80 (2013). https://doi.org/10.1016/j.memsci.2013.07.017
  18. D. H. Kim, H. S. Park, S. J. Seo, J. S. Park, S. H. Moon, Y. W. Choi, Y. S. Jiong, D. H. Kim, and M. S. Kang, "Facile surface modificain of anion-exchange membranes for improvement of diffusion dialysis performance", J. Colloid Interf. Sci., 416, 19 (2014). https://doi.org/10.1016/j.jcis.2013.10.013
  19. Y. J. Kim and J. H. Choi, "Desalination of brackish water by capacitive deionization system combined with ion-exchange membrane", Appl. Chem. Eng., 21(1), 87 (2010).