DOI QR코드

DOI QR Code

Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative ($Emdogain^{(R)}$)

  • Kwon, Yong-Dae (Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University) ;
  • Choi, Hyun-Jung (Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University) ;
  • Lee, Heesu (Department of Oral Anatomy, Dental School, Kangnung-Wonju National University) ;
  • Lee, Jung-Woo (Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University) ;
  • Weber, Hans-Peter (Department of Prosthodontics and Operative Dentistry, Tufts University School of Dental Medicine) ;
  • Pae, Ahran (Department of Prosthodontics, School of Dentistry, Kyung Hee University)
  • Received : 2014.03.05
  • Accepted : 2014.07.07
  • Published : 2014.10.31

Abstract

PURPOSE. The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS. Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD $25{\mu}g/mL$, and (3) with EMD $100{\mu}g/mL$ on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-${\beta}1$ was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS. From MTT assay, HGF showed more proliferation in EMD $25{\mu}g/mL$ group than control and EMD $100{\mu}g/mL$ group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD $25{\mu}g/mL$ group and EMD $100{\mu}g/mL$ group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-${\beta}1$ was increased at EMD $100{\mu}g/mL$. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD $25{\mu}g/mL$. CONCLUSION. Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-${\beta}1$ in high concentration levels. CLINICAL RELEVANCE. With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.

Keywords

References

  1. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  2. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35:819-26. https://doi.org/10.1016/j.jdent.2007.07.008
  3. Butz F, Heydecke G, Okutan M, Strub JR. Survival rate, fracture strength and failure mode of ceramic implant abutments after chewing simulation. J Oral Rehabil 2005;32:838-43. https://doi.org/10.1111/j.1365-2842.2005.01515.x
  4. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004;75:292-6. https://doi.org/10.1902/jop.2004.75.2.292
  5. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants 2002;17:793-8.
  6. Degidi M, Artese L, Scarano A, Perrotti V, Gehrke P, Piattelli A. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J Periodontol 2006;77:73-80. https://doi.org/10.1902/jop.2006.77.1.73
  7. Welander M, Abrahamsson I, Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res 2008;19:635-41.
  8. van Brakel R, Cune MS, van Winkelhoff AJ, de Putter C, Verhoeven JW, van der Reijden W. Early bacterial colonization and soft tissue health around zirconia and titanium abutments: an in vivo study in man. Clin Oral Implants Res 2011;22:571-7. https://doi.org/10.1111/j.1600-0501.2010.02005.x
  9. Hammarstrom L. Enamel matrix, cementum development and regeneration. J Clin Periodontol 1997;24:658-68. https://doi.org/10.1111/j.1600-051X.1997.tb00247.x
  10. Hammarström L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol 1997;24: 669-77. https://doi.org/10.1111/j.1600-051X.1997.tb00248.x
  11. Gestrelius S, Andersson C, Johansson AC, Persson E, Brodin A, Rydhag L, Hammarstrom L. Formulation of enamel matrix derivative for surface coating. Kinetics and cell colonization. J Clin Periodontol 1997;24:678-84. https://doi.org/10.1111/j.1600-051X.1997.tb00249.x
  12. Gestrelius S, Lyngstadaas SP, Hammarstrom L. Emdogainperiodontal regeneration based on biomimicry. Clin Oral Investig 2000;4:120-5. https://doi.org/10.1007/s007840050127
  13. Sculean A, Windisch P, Keglevich T, Fabi B, Lundgren E, Lyngstadaas PS. Presence of an enamel matrix protein derivative on human teeth following periodontal surgery. Clin Oral Investig 2002;6:183-7. https://doi.org/10.1007/s00784-002-0171-6
  14. Van der Pauw MT, Van den Bos T, Everts V, Beertsen W. Enamel matrix-derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor beta1 release of periodontal ligament and gingival fibroblasts. J Periodontol 2000;71:31-43. https://doi.org/10.1902/jop.2000.71.1.31
  15. Lyngstadaas SP, Lundberg E, Ekdahl H, Andersson C, Gestrelius S. Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin Periodontol 2001;28:181-8. https://doi.org/10.1034/j.1600-051x.2001.028002181.x
  16. Jiang J, Goodarzi G, He J, Li H, Safavi KE, Spångberg LS, Zhu Q. Emdogain-gel stimulates proliferation of odontoblasts and osteoblasts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:698-702. https://doi.org/10.1016/j.tripleo.2006.02.011
  17. He J, Jiang J, Safavi KE, Spangberg LS, Zhu Q. Emdogain promotes osteoblast proliferation and differentiation and stimulates osteoprotegerin expression. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:239-45. https://doi.org/10.1016/j.tripleo.2003.10.005
  18. Lossdorfer S, Sun M, Gotz W, Dard M, Jager A. Enamel matrix derivative promotes human periodontal ligament cell differentiation and osteoprotegerin production in vitro. J Dent Res 2007;86:980-5. https://doi.org/10.1177/154405910708601012
  19. Jue SS, Lee WY, Kwon YD, Kim YR, Pae A, Lee B. The effects of enamel matrix derivative on the proliferation and differentiation of human mesenchymal stem cells. Clin Oral Implants Res 2010;21:741-6. https://doi.org/10.1111/j.1600-0501.2009.01901.x
  20. Heden G, Wennstrom J, Lindhe J. Periodontal tissue alterations following Emdogain treatment of periodontal sites with angular bone defects. A series of case reports. J Clin Periodontol 1999;26:855-60. https://doi.org/10.1034/j.1600-051X.1997.00855.x
  21. Trombelli L, Bottega S, Zucchelli G. Supracrestal soft tissue presentation with enamel matrix proteins in the treatment of deep intrabony defects. A report of 35 consecutively treated cases. J Clin Periodontol 2002;29:433-9. https://doi.org/10.1034/j.1600-051X.2002.290508.x
  22. Yilmaz S, Kuru B, Altuna-Kirac E. Enamel matrix proteins in the treatment of periodontal sites with horizontal type of bone loss. J Clin Periodontol 2003;30:197-206. https://doi.org/10.1034/j.1600-051X.2003.10190.x
  23. Sculean A, Chiantella GC, Arweiler NB, Becker J, Schwarz F, Stavropoulos A. Five-year clinical and histologic results following treatment of human intrabony defects with an enamel matrix derivative combined with a natural bone mineral. Int J Periodontics Restorative Dent 2008;28:153-61.
  24. Sculean A, Kiss A, Miliauskaite A, Schwarz F, Arweiler NB, Hannig M. Ten-year results following treatment of intra-bony defects with enamel matrix proteins and guided tissue regeneration. J Clin Periodontol 2008;35:817-24. https://doi.org/10.1111/j.1600-051X.2008.01295.x
  25. Modica F, Del Pizzo M, Roccuzzo M, Romagnoli R. Coronally advanced flap for the treatment of buccal gingival recessions with and without enamel matrix derivative. A splitmouth study. J Periodontol 2000;71:1693-8. https://doi.org/10.1902/jop.2000.71.11.1693
  26. Berlucchi I, Francetti L, Del Fabbro M, Testori T, Weinstein RL. Enamel matrix proteins (Emdogain) in combination with coronally advanced flap or subepithelial connective tissue graft in the treatment of shallow gingival recessions. Int J Periodontics Restorative Dent 2002;22:583-93.
  27. Hagewald S, Spahr A, Rompola E, Haller B, Heijl L, Bernimoulin JP. Comparative study of Emdogain and coronally advanced flap technique in the treatment of human gingival recessions. A prospective controlled clinical study. J Clin Periodontol 2002;29:35-41. https://doi.org/10.1034/j.1600-051x.2002.290106.x
  28. Nemcovsky CE, Artzi Z, Tal H, Kozlovsky A, Moses O. A multicenter comparative study of two root coverage procedures: coronally advanced flap with addition of enamel matrix proteins and subpedicle connective tissue graft. J Periodontol 2004;75:600-7. https://doi.org/10.1902/jop.2004.75.4.600
  29. Cueva MA, Boltchi FE, Hallmon WW, Nunn ME, Rivera- Hidalgo F, Rees T. A comparative study of coronally advanced flaps with and without the addition of enamel matrix derivative in the treatment of marginal tissue recession. J Periodontol 2004;75:949-56. https://doi.org/10.1902/jop.2004.75.7.949
  30. Keila S, Nemcovsky CE, Moses O, Artzi Z, Weinreb M. In vitro effects of enamel matrix proteins on rat bone marrow cells and gingival fibroblasts. J Dent Res 2004;83:134-8. https://doi.org/10.1177/154405910408300210
  31. Zeldich E, Koren R, Nemcovsky C, Weinreb M. Enamel matrix derivative stimulates human gingival fibroblast proliferation via ERK. J Dent Res 2007;86:41-6. https://doi.org/10.1177/154405910708600106
  32. Mustafa K, Silva Lopez B, Hultenby K, Wennerberg A, Arvidson K. Attachment and proliferation of human oral fibroblasts to titanium surfaces blasted with TiO2 particles. A scanning electron microscopic and histomorphometric analysis. Clin Oral Implants Res 1998;9:195-207. https://doi.org/10.1034/j.1600-0501.1998.090307.x
  33. Grossner-Schreiber B, Herzog M, Hedderich J, Duck A, Hannig M, Griepentrog M. Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study. Clin Oral Implants Res 2006;17:736-45. https://doi.org/10.1111/j.1600-0501.2006.01277.x
  34. Zhang F, Huang Y, Li X, Zhao S. Surface modification and its effect on attachment, spreading, and proliferation of human gingival fibroblasts. Int J Oral Maxillofac Implants 2011; 26:1183-92.
  35. Pae A, Lee H, Kim HS, Kwon YD, Woo YH. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces. Biomed Mater 2009;4: 025005. https://doi.org/10.1088/1748-6041/4/2/025005
  36. Yamano S, Ma AK, Shanti RM, Kim SW, Wada K, Sukotjo C. The influence of different implant materials on human gingival fibroblast morphology, proliferation, and gene expression. Int J Oral Maxillofac Implants. 2011;26:1247-55.
  37. Abrahamsson I, Berglundh T, Glantz PO, Lindhe J. The mucosal attachment at different abutments. An experimental study in dogs. J Clin Periodontol 1998;25:721-7. https://doi.org/10.1111/j.1600-051X.1998.tb02513.x
  38. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Scharer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont 2004;17:285-90.
  39. Canullo L. Clinical outcome study of customized zirconia abutments for single-implant restorations. Int J Prosthodont 2007;20:489-93.
  40. Zembic A, Sailer I, Jung RE, Hammerle CH. Randomizedcontrolled clinical trial of customized zirconia and titanium implant abutments for single-tooth implants in canine and posterior regions: 3-year results. Clin Oral Implants Res 2009;20:802-8. https://doi.org/10.1111/j.1600-0501.2009.01717.x
  41. Raffaelli L, Rossi Iommetti P, Piccioni E, Toesca A, Serini S, Resci F, Missori M, De Spirito M, Manicone PF, Calviello G. Growth, viability, adhesion potential, and fibronectin expression in fibroblasts cultured on zirconia or feldspatic ceramics in vitro. J Biomed Mater Res A 2008;86:959-68.
  42. Tete S, Mastrangelo F, Bianchi A, Zizzari V, Scarano A. Collagen fiber orientation around machined titanium and zirconia dental implant necks: an animal study. Int J Oral Maxillofac Implants 2009;24:52-8.
  43. Rincon JC, Haase HR, Bartold PM. Effect of Emdogain on human periodontal fibroblasts in an in vitro wound-healing model. J Periodontal Res 2003;38:290-5. https://doi.org/10.1034/j.1600-0765.2003.00610.x
  44. Gestrelius S, Andersson C, Lidstrom D, Hammarstrom L, Somerman M. In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol 1997;24:685-92. https://doi.org/10.1111/j.1600-051X.1997.tb00250.x
  45. Giannopoulou C, Cimasoni G. Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 1996;75:895-902. https://doi.org/10.1177/00220345960750030601
  46. Ivanovski S, Li H, Haase HR, Bartold PM. Expression of bone associated macromolecules by gingival and periodontal ligament fibroblasts. J Periodontal Res 2001;36:131-41. https://doi.org/10.1034/j.1600-0765.2001.360301.x
  47. Carmona-Rodriguez B, Alvarez-Perez MA, Narayanan AS, Zeichner-David M, Reyes-Gasga J, Molina-Guarneros J, Garcia-Hernandez AL, Suarez-Franco JL, Chavarria IG, Villarreal-Ramirez E, Arzate H. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Commun 2007;358:763-9. https://doi.org/10.1016/j.bbrc.2007.04.204
  48. van der Pauw MT, Van den Bos T, Everts V, Beertsen W. Phagocytosis of fibronectin and collagens type I, III, and V by human gingival and periodontal ligament fibroblasts in vitro. J Periodontol 2001;72:1340-7. https://doi.org/10.1902/jop.2001.72.10.1340
  49. Heino J, Ignotz RA, Hemler ME, Crouse C, Massague J. Regulation of cell adhesion receptors by transforming growth factor-beta. Concomitant regulation of integrins that share a common beta 1 subunit. J Biol Chem 1989;264:380-8.

Cited by

  1. Enamel matrix derivative improves gingival fibroblast cell behavior cultured on titanium surfaces vol.20, pp.4, 2016, https://doi.org/10.1007/s00784-015-1558-5
  2. Human gingival fibroblast response to enamel matrix derivative, porcine recombinant 21.3-kDa amelogenin and 5.3-kDa tyrosine-rich amelogenin peptide vol.30, pp.3, 2017, https://doi.org/10.1007/s13577-017-0164-z
  3. Comparison of Cytomorphometry and Early Cell Response of Human Gingival Fibroblast (HGFs) between Zirconium and New Zirconia-Reinforced Lithium Silicate Ceramics (ZLS) vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092718
  4. Rhodoptilometrin, a Crinoid-Derived Anthraquinone, Induces Cell Regeneration by Promoting Wound Healing and Oxidative Phosphorylation in Human Gingival Fibroblast Cells vol.17, pp.3, 2019, https://doi.org/10.3390/md17030138
  5. Fibroblast response to initial attachment and proliferation on titanium and zirconium surfaces vol.5, pp.5, 2014, https://doi.org/10.17126/joralres.2016.043
  6. Effects of cleaning methods for custom abutment surfaces on gene expression of human gingival fibroblasts vol.59, pp.4, 2014, https://doi.org/10.2334/josnusd.16-0681
  7. The impact of collagen membranes on 3D gingival fibroblast toroids vol.19, pp.None, 2014, https://doi.org/10.1186/s12903-019-0736-2
  8. Biocompatibility of Polymer and Ceramic CAD/CAM Materials with Human Gingival Fibroblasts (HGFs) vol.11, pp.9, 2014, https://doi.org/10.3390/polym11091446
  9. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-90037-5