• Title/Summary/Keyword: Enamel matrix derivative ($Emdogain^{(R)}$)

Search Result 10, Processing Time 0.025 seconds

The Effects of Enamel Matrix Derivative and Calcium Sulfate Paste on the Healing of 1-Wall Intrabony Defects in Beagle Dogs (성견 1면 치조골 결손부에서 $Emdogain^{(R)}$$Emdogain^{(R)}$ 및 특수 제조된 Calcium Sulfate Paste 혼합물이 치주조직 치유에 미치는 영향)

  • Choi, Seong-Ho;Kim, Chang-Sung;Suh, Jong-Jin;Kim, Hyun-Young;Kim, Jeong-Hye;Cho, Kyoo-Sung;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.539-555
    • /
    • 2000
  • Recently, it was reported that enamel matrix derivative may be beneficial in periodontal regeneration procedures in expectation of promoting new bone and cementum formation. The aim of present study was to evaluate the effect of enamel matrix derivative($Emdogain^?$)and Caso4 sulfate paste in 1-wall intrabony defects in beagle dogs. Surgically created 1-wall intrabony defects were randomly assigned to receive root debridement alone or $Emdogain^{(R)}$ or $Emdogain^{(R)}$ and Caso4. Clinical defect size was 4 X 4mm. The control group was treated with root debridement alone,and Experimental group I was treated with enamel matrix derivative application, and Experimental group II was treated with enamel matrix derivative and Caso4 sulfate paste application,. The healing processes were histologically and histometrically observed after 8 weeks and the results were as follows: 1. The length of junctional epithelium was $0.41{\pm}0.01mm$ in the control group, $0.42{\pm}0.08mm$in the experimental group I and $0.50{\pm}0.13mm$in the experimental group II. 2. The connective tissue adhesion was $0.28{\pm}0.02mm$ in the control group, $0.13{\pm}0.08mm$ in the experimental group I and $0.19{\pm}0.02mm$ in the experimental group II. 3. The new cementum formation was $3.80{\pm}0.06mm$ in the control group, $4.12{\pm}0.43mm$ in the experimental group I and $4.34{\pm}0.71mm$ in the experimental group II. 4. The new bone formation was $1.43{\pm}0.03mm$ in the control group, $1.53{\pm}0.47mm$ in the experimental group I and $2.25{\pm}1.35mm$ in the experimental group II. Although there was limitation to present study, the use of enamel matrix derivative in the treatment of periodontal 1-wall intrabony defect enhanced new cementum and bone formation. Caso4 sulfate paste will be the candidate for carriers to deliver enamel matrix derivative, and so enhance the regenerative potency of enamel matrix derivative.

  • PDF

Treatment of Palatogingival Groove using Glass-Ionomer cement and Emdogain$^{(R)}$ (Original Article 2 - 글라스-아이오노머 시멘트와 Emdogain$^{(R)}$을 이용한 구개치은발육구의 치료)

  • Jin, Myoung-Uk
    • The Journal of the Korean dental association
    • /
    • v.48 no.1
    • /
    • pp.56-62
    • /
    • 2010
  • In recent years, a number of special treatment procedures have been introduced to reestablish new tooth supporting tissues with varying degrees of success including guided tissue regeneration(GTR), bone grafting(BG) and the use of enamel matrix derivative(EMD). EMD is an extract of enamel matrix and contains amelogenins of various molecular weights. Emdogain(EMD) might have some advantages over other methods of regenerating the tissue supporting teeth lost by gum disease, such as less postoperative complications. Emdogain contains proteins(derived from developing pig teeth) believed to regenerate tooth attachment. The decrease in probing depth after EMD treatment is achieved primarily by clinical attachment gain and bone regeneration and only to a minor extent by gingival recession. In conclsion, EMD seems to be safe, was able to regenerate lost periodontal tissues in previously diseased sites based on clinical parameters.

Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative ($Emdogain^{(R)}$)

  • Kwon, Yong-Dae;Choi, Hyun-Jung;Lee, Heesu;Lee, Jung-Woo;Weber, Hans-Peter;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • PURPOSE. The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS. Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD $25{\mu}g/mL$, and (3) with EMD $100{\mu}g/mL$ on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-${\beta}1$ was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS. From MTT assay, HGF showed more proliferation in EMD $25{\mu}g/mL$ group than control and EMD $100{\mu}g/mL$ group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD $25{\mu}g/mL$ group and EMD $100{\mu}g/mL$ group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-${\beta}1$ was increased at EMD $100{\mu}g/mL$. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD $25{\mu}g/mL$. CONCLUSION. Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-${\beta}1$ in high concentration levels. CLINICAL RELEVANCE. With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.

The effects of bone morphogenetic protein-2 and enamel matrix derivative on the bioactivity of mineral trioxide aggregate in MC3T3-E1cells

  • Jeong, Youngdan;Yang, Wonkyung;Ko, Hyunjung;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.187-194
    • /
    • 2014
  • Objectives: The effects of bone morphogenetic protein-2 (BMP-2) and enamel matrix derivative (EMD) respectively with mineral trioxide aggregate (MTA) on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. Materials and Methods: MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply), BMP-2 (R&D Systems), EMD (Emdogain, Straumann) separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich) and Alizarin red (Sigma-Aldrich). The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and osteonectin (OSN), as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer). Results: Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05). Conclusions: These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.

The Effect of Enamel Matrix Derivative on the Healing of Autotransplanted Periodontally Diseased Teeth (법랑기질 유도체가 치주질환에 이환된 자가이식 치아의 치유에 미치는 영향)

  • Kim, Ji-Hwan;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.193-209
    • /
    • 2001
  • The prognosis of transplanted teeth is strongly related with periodontal healing. Several experimental studies showed that the application of enamel matrix derivatives on periodontitis-affected root surfaces resulted in periodontal regeneration. The purpose of this study was to determine the effect of enamel matrix derivatives on periodontitis-affected root surfaces prior to transplantation in dogs. Class III Furcation defects were surgically created on the left second, the third and the fourth premolar in the mandibles of nine mongrel dogs and experimental periodontitis was induced by placing small cotton pellets into defects for 3 weeks. Periodontitis-affected roots were treated by scaling and planing and the coronal portions were removed. Each root was extracted and implanted into recipient bed prepared in the contralateral premolar area. The transplanted roots were grouped according to the treatment modalities; Group I- roots treated with saline only, Group II- roots conditioned by neutral EDTA, and Group III- roots conditioned by neutral EDTA and enamel matrix derivatives ($EMDOGAIN^{(R)}$, BIORA Co., Sweden). The animals were sacrificed at 1 week, 3 weeks, and 10 weeks after transplantation and decalcified specimens were prepared for histologic examination. In Group I, healing was most frequently characterized by root resorption and ankylosis. In Group II, with root resorption and ankylosis in a few specimens, connective tissue attachment was partly seen on denuded root surface, but no cementum formation was seen. In Group III, there was regeneration by new cementum and periodontal ligament on denuded root surface, although slight root resorption and ankylosis were found in a few specimens. This result suggests that enamel matrix derivatives treatment on periodontitis-aggected root surface could reduce the frequency of root resorption and ankylosis and contribute to periodontal regeneration, and might be useful for autologous transplantation.

  • PDF

Effects of enamel matrix derivative and titanium on the proliferation and differentiation of osteoblasts (법랑기질유도체를 도포한 타이태늄 표면에서 조골세포의 증식 및 분화)

  • Park, Sang-Hyun;Lee, In-Kyeong;Yang, Seung-Min;Shin, Seung-Yun;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.359-372
    • /
    • 2003
  • Among objectives of periodontal therapy. the principal one is the morphological and functional reconstruction of lost periodontal supporting tissues. This includes de novo formation of connective tissue attachment and the regrowth of alveolar bone. The use of enamel matrix derivative(EMD) may be a suitable means of regeneration new periodontal attachment in the infrabony defects. Implant used to replace lost tooth but, implantitis occurred after installation. The purpose of this study was to investigate the effects of EMD on differentiation and growth of osteoblast in titanium disc. Twentyfive millimeter diameter and 1mm thick Ti disc which was coated 25, 50, 100, 200${\mu}g$/ml of EMD(Emdogain(R)) used as experimental group, 25, 50, 100, 200ng/d of rhBMP-2 as positive control group, and no coat as negative control group. A human osteosarcoma cell line Saos-2 was cultured in Ti disc and cell proliferation and Alkaline phosphatase (ALP) activity were measured at 1 and 6 days. PCR was performed at 2 and 8 hours. Semi-quantitative RT-PCR for mRNA expressions of various osteoblastic differentiation markers -type I collagen, ALP, osteopontin, and bone sialoprotein - were performed at appropriate concentrations based upon the results of MTT and ALP assay. Cultured cell-disc complexes were prepared for scanning electron microscopy (SEM) at 2 hour. Data were analyzed using Mann-Whitney and repeated- measures 1-way analysis of variance(SPSS software version 10,SPSS. Chicago. IL). After culture, there was more osteoblast in EMD100${\mu}g$/ml than in EMD50, 200${\mu}g$/ml on day 6. There was significant difference in experimental and positive control group compared control group, as times go by(1 and 6 days). Alkaline phosphatase activity was different significantly in EMD100, 200${\mu}g$/ml and BMP100, 200${\mu}g$/ml on day 6. The results of reverse transcriptase-polymerase chain reaction (RT-PCR) showed that expression of mRNA for ALPase, collagen type I, osteopontin. hone sialoprotein and BMP-2 was detected at 2 hour and 8 hour in EMI 200${\mu}g$/ml subgroup and BMP100ng/ml subgroup. The results of this study suggest that application of enamel matrix derivative on osteoblast attached to titanium surface facilitate the expression of bone specific protein and the differentiation and growth of osteoblast.

Effect of Enamel Matrix Drivatives application on the expression of PDLs17, PDLs22 of cultured human periodontal ligament cells in vitro (Enamel Matrix Derivatives가 사람 치주인대 세포의 특이유전자인 PDLs17, PDLs22의 발현에 끼치는 효과)

  • Han, Geun-A;Jang, Hyun-seon;Kok, Jung-Ki;Park, Ju-Chol;Kim, Heoung-Jung;Kim, Jung-Gwan;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.333-344
    • /
    • 2004
  • The enamel matrix derivative (EMD) has been recently used in the periodontal regenerative techniques. The present study was established to investigate the influence of EMD on human periodontal ligament cells using expression of mRNA of periodontal ligament specific gene (PDLs)17, PDLs22, type I collagen when EMD applied to periodontal ligament cells. Periodontal ligament cells were obtained from a healthy periodontium and cultured in Dulbecco's modified Eagle's medium (DMEM) plus 10% fetal bovine serum and ${\beta}-glycerophosphate$ with ascorbic acid. Test groups were two; One adds EMD in culture media and another added EMD and Dexamethasone (DEX) in culture media. Positive control group added DEX in culture media, and negative control group adds niether of EMD nor DEX. $Emdogain^{(R)}$ (Biora, Sweden, 30 mg/ml) was diluted by 75 ${\mu}g/ml$ concentration to culture media. For reverse transcription-polymerase chain reaction (RT-PCR), total RNA isolated on days 0, 7, 14 and 21. mRNA of PDLs17 was expressed on days 14 and 21 in EMD or DEX group, and expressed on days 7, 14 and 21 in EMD plus DEX group, the other side, expressed on days 21 in negative control group. mRNA of PDLs22 expressed on days 7, 14 and 21 in EMD group, and expressed on days 14 and 21 in DEX group, and expressed on days 7, 14 and 21 in EMD plus DEX group. Negative control group expressed on days 14 and 21. Type I collagen was expressed on all days and all groups. These results indicate that EMD promotes differentiation of periodontal ligament cells, and this is considered to offer basis that can apply EMD to periodontal tissue regeneration technique.

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.

The effect of enamel matrix derivative (EMD) in combination with deproteinized bovine bone material (DBBM) on the early wound healing of rabbit calvarial defects (법랑기질 단백질 유도체와 혼합된 이종골 이식재가 토끼 두개골 결손부 초기 치유에 미치는 영향)

  • Kim, You-Seok;Jang, Hyun-Seon;Park, Ju-Chol;Kim, Heoung-Jung;Lee, Jong-Woo;Kim, Chong-Kwan;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.199-216
    • /
    • 2005
  • 치주치료의 가장 중요한 목적은 상실된 치주조직의 형태적, 기능적 재건이다. 법랑기칠 단백질 유도체(enamel matrix derivative: EMD)는 치주 병소에 사용시 상피세포의 증식을 억제하며 치주인대 및 백악아세포를 활성화시켜 무세포성 백악질 및 치주인대와 골조직의 생성을 유도한다고 보고되고 있다. 또한 법랑기질 단백칠 유도체는 골모세포의 증식 및 분화를 촉진시키며 alkaline phosphatase의 활성 및 mineralized nodule의 형성을 촉진시킨다고 보고되고 있다. 이에 본 연구에서는 토끼 두개골 결손부에 법랑기질 단백질 유도체와 이종골 이식재를 이식한 후 골밀도를 방사선학적으로 분석하고, 신생골 형성 및 주변 조직 반응을 조직학적으로 관찰, 평가하고자 하였다. 토끼 두개골에 6mm trephine bur(외경 8mm)를 이용하여 경뇌막에 손상을 주지 않도록 하면서 4개의 결손부를 형성하였다. 아무것도 이식하지 않은 군을 음성 대조군으로, 이종골 이식재 ($Bio-Oss^{(R)}$, Geistlich, Wolhusen, Switzerland)을 이식한 군을 양성 대조군으로 설정하였다. 법랑기질 단백질 유도체 ($Emdogain^{(R)}$, Biora, Inc., Sweden)만 이식한 군과 법랑기질 단백질 유도체와 이종골 이식재를 혼합하여 이식한 군을 설험군으로 설정하였다. 각각의 재료를 이식한 후 비흡수성 차폐막 ($Tefgen^{(R)}$, Lifecore Biomedical, Inc., U.S.A.)을 위치시키고 흡수성 봉합사로 일차봉합을 시행하였다. 각 군당 술 후 1, 2, 4주의 치유기간을 설정하였다. 동물을 희생시킨 후 두개골을 절제하여 먼저 방사선학적인 골밀도측정을 시행한 후 10% formalin에 고정한 후 통법에 따라 조직표본을 제작하여 광학현미경으로 관찰하였다. 1. 방사선학적인 평가에서 1, 2, 4주에 대조군과 법랑기질 단백질 유도체만 이식한 군과 비교해 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군에서 더 큰 골의 밀도를 보이고 있었다 (P<0.01). 하지만, 동일한 시기에 대조군과 법랑기질 단백질 유도체만 이식한 군과의 차이는 발견할 수 없었으며 (P>0.05), 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군의 차이 또한 발견할 수 없었다 (P>0.05). 2. 조직학적인 평가에서 1, 2, 4주에 대조군과 법랑기질 단백질 유도체만 이식한 군과 비교해 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한군에서 골의 형성이 더 진행됨을 알 수 있었다. 법랑기질 단백질 유도체만 이식한 군이 대조군보다 2주에서 더 많은 신생골을 볼 수 있었으며, 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군이 이종골 이식재만 이식한 군보다 1, 2주에서 더 많은 신생골을 관찰할 수 있었다. 이상의 결과에서 법랑기질 단백질 유도체는 토끼 두개골 결손부 치유단계에서 초기 골 형성을 촉진하는 것으로 사료되며 골 이식시에 법랑기질 단백질 유도체를 적용하는 것은 유용한 술식으로 사료된다.