DOI QR코드

DOI QR Code

산업적 응용을 위한 홍조류 당화 기술

Industrial Applications of Saccharification Technology for Red Seaweed Polysaccharide

  • 홍채환 (현대자동차 중앙연구소) ;
  • 김세원 (조선대학교 생명화학고분자공학과) ;
  • 김용운 (조선대학교 생명화학고분자공학과) ;
  • 박현달 (현대자동차 중앙연구소) ;
  • 신현재 (조선대학교 생명화학고분자공학과)
  • Hong, Chae-Hwan (Research & Development Division, Hyundai Motor Group) ;
  • Kim, Se Won (Department of Chemical, Biochemical and Polymer Engineering, Chosun University) ;
  • Kim, Yong-Woon (Department of Chemical, Biochemical and Polymer Engineering, Chosun University) ;
  • Park, Hyun-Dal (Research & Development Division, Hyundai Motor Group) ;
  • Shin, Hyun-Jae (Department of Chemical, Biochemical and Polymer Engineering, Chosun University)
  • 투고 : 2014.08.09
  • 심사 : 2014.08.28
  • 발행 : 2014.10.30

초록

Recently seaweed polysaccharides have been extensively studied for alternative energy application. Because their producing cost is high and efficiency low, their industrial applications have been limited. The main component of cell wall of red algae represented by Gelidiales and Gracilariales is agar. Red-algae agar or galactan, consisting of D-galactose and 3, 6-anhydro-L-galactose, is suitable for bio-product application if hydrolyzed to monomer unit. For the hydrolysis of algae, chemical or enzymatic treatment can be used. A chemical process using a strong acid is simple and efficient, but it generates together with target sugar and toxic compounds. In an enzymatic hydrolysis process, target sugar without toxic compounds generation. The objective of this review is to summary the recent data of saccharification by chemical and enzymatic means from red seaweed for especially focused on automobile industry.

키워드

참고문헌

  1. Jeong, G. T. and D. H. Park (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl. Biochem. Biotechnol. 161: 41-52. https://doi.org/10.1007/s12010-009-8795-5
  2. Meinita, M. D. N., Y. K. Hong, and G. T. Jeong (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35: 123-128. https://doi.org/10.1007/s00449-011-0609-9
  3. Lee, H. D. (1999) Policy Directions for the Development of Marine Biotechnology.
  4. Chandini, S. K., P. Ganesan, P. V. Suresh, and N. Bhaskar (2008) Seaweeds as source of nutritionally beneficial compounds-A review. J. Food Sci. Technol. 45: 1-13.
  5. Kumari, P., M. Kumar, V. Gupta, C. R. K. Reddy, and B. Jha (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 120: 749-757. https://doi.org/10.1016/j.foodchem.2009.11.006
  6. Dolan, T. C. S. and D. A. Rees (1965) The carrageenans. II. The positions of the glycosidic linkages and sulphate esters in $\lambda$-carrageenan. J. Chem. Soc. 3534. https://doi.org/10.1039/jr9650003534
  7. Duckworth, M. and W. Yaphe (1971) Structure of ahar. I. Fractionation of a complex mixture of polysaccharides. Carboohydr. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  8. Kim, J. H., Y. H. Kim, S. K. Kim, B. W. Kim, and S. W. Nam (2011) Properties and Industrial Applications of Seaweed Polysaccharides- degrading Enzymes from the Marine Microorganisms. Korean J. Microbiol. Biotechnol. 39: 189-199.
  9. Duckworth, M. and W. Yaphe (1971) Structure of ahar. I. Fractionation of a complex mixture of polysaccharides. Carboohydr. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  10. Beer, L., E. S. Boyd, J. Peters, and M. Posewitz (2009) Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotech. 20: 264-271. https://doi.org/10.1016/j.copbio.2009.06.002
  11. Buck, B. C. and C. M. Buchholz (2004) The offshore ring: A new system design for the open ocean aquaculture of macroalgae. J. Appl. Phycol. 16: 355-369. https://doi.org/10.1023/B:JAPH.0000047947.96231.ea
  12. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  13. Park, H. Y., H. D. Yoon and E. G. Oh (2001) Effect of Meristotheca Papulosa on Lipid Concentration of Serum and Liver in Rats Fed High Fat Diet. J. Korean Soc. Food Sci. Nutr. 30: 107-111
  14. Seo, H. Y.and B. M. Jung (2007) Comparative study of food components and sensory properties of common Porphyra yezoensis and functional Porphyra yezoensis. J. Korean Soc. Food Sci. Nutr. 36: 13141-1319. https://doi.org/10.3746/jkfn.2007.36.10.1314
  15. Do, J. R. and Y. J. Nam (1997) Studies on Chemical Composition of Red Algae. J. Korean Fish. Soc. 30: 428-431.
  16. Kim, D. G., J. B. Park and T. K. Lee (2013) Analysis of Biochemical Compositions and Nutritive Values of Six Species of Seaweeds. J. Life Sci. 23: 1004-1009. https://doi.org/10.5352/JLS.2013.23.8.1004
  17. Kim, S. S. and Y. H. Park (1978) Seasonal variation in carrageenan content and its chemical composition of Chondrus pinnulatus. Bull. Korean Fish. Soc. 11: 55-64.
  18. Saha, B. C. and Cotta, M. A. (2007) Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb. Tech. 41: 528-532. https://doi.org/10.1016/j.enzmictec.2007.04.006
  19. John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  20. Park, J. H., J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. Y. Yoon, and Y. J. Kim (2012) Use of Gelidim amansii as a promising resource for bioethanol: a practical approach for continuous diluteacid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88. https://doi.org/10.1016/j.biortech.2011.12.065
  21. Jang, S. S., S. Yoshihito, U. Motoharu, and W. Minato (2012) Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953-1963.
  22. Wu, C. W., Y. C. Chen, W. C. Chen, and C. H. Wu (2010) Bioethanol from acid-hydrolyzed Gacilaria. J. Taiwan Fish. Res. 18: 65-75. (in Chinese)
  23. Maria, D. N. M., M. Bintang, W. Tjahjo, G. T. Jeong, N. A. K. Mohammed, and Y. K. Hong (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25: 1957-1961. https://doi.org/10.1007/s10811-013-0041-4
  24. Wang, X., X. Liu, and G. Wang (2011) Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J. Integr. Plant. Biol. 53: 246-252. https://doi.org/10.1111/j.1744-7909.2010.01024.x
  25. Kumar, S., R., G. Kumar, D. Sahoo, and R. C. Kuhad (2013) Bioethanol production from Gracilaria verrucosa, ared alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156. https://doi.org/10.1016/j.biortech.2012.10.120
  26. Meinita, M. D. N., J. Y. Kang, G. T. Jeong, H. M. Koo, S. M. Park, and Hong, Y. K. (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24: 857-862. https://doi.org/10.1007/s10811-011-9705-0
  27. Khambhaty, Y., K. Mody, M. R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, and E. K. Ghosh (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103: 180-185. https://doi.org/10.1016/j.biortech.2011.10.015
  28. Meinita, M. D. N., Y. K. Hong, and G. T. Jeong (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioproc. Biosyst. Eng. 35: 123-128 https://doi.org/10.1007/s00449-011-0609-9
  29. Lee, S. M., B. J. Yu, Y. M. Kim, S. J. Choi, J. M. Ha, and J. H. Lee (2009) Production of Bio-ethanol from Agar using Saccharomyces cerevisiae. J. Korean Ind. Eng. Chem. 20: 290-295.
  30. Kim, H. T., E. J. Yun, D. Wang, J. H. Chung, I. G.Choi, and K. H. Kim (2013) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour. Technol. 136: 582-587. https://doi.org/10.1016/j.biortech.2013.03.038
  31. Kim, H. S. and T. J. Bae. (2002) Studies on the Hydrolysis of Seaweed using Microorganisms and Its Application II. Screening of Microfloras Involved in Hydrolysis of Seaweed Tenella, Seaweed Fusiforme and Green Laver. Korean J. Food Nutr. 15: 257-266.
  32. Yanagisawa, M., K. Nakamura, O. Ariga, and K. Nakasaki (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116. https://doi.org/10.1016/j.procbio.2011.08.001
  33. Denis, C., H. L. Jeune, P. Gaudin, and J. Fleurence (2009) An evaluation of methods for quantifying the enzymatic degradation of red seaweed Grateloupia turuturu. J. Appl. Phycol. 21: 153-159. https://doi.org/10.1007/s10811-008-9344-2
  34. Wu, F. C., J. Y. Wu, Y. J. Liao, M. Y. Wang, and I. L. Shih (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour. Technol. 156: 123-131. https://doi.org/10.1016/j.biortech.2014.01.024
  35. Jang, H. J., D. G. Lee, S. W. Lee, M. J. Jeon, W. J. Chun, K. K. Kwon, H. S. Lee, and S. H. Lee (2011) Isolation of a marine-derived Flammeovirga Sp. Mbrc-1 strain and characterization of its agagase. KSBB J. 26: 552-556. https://doi.org/10.7841/ksbbj.2011.26.6.552
  36. Chi, W. J., Y. K. Chang, and S. K. Hong (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  37. Michel, G., P. Nyval-Collen, T. Barbeyron, M. Czjzek, and W. Helbert (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl. Microbiol. Biotechnol. 71: 23-33. https://doi.org/10.1007/s00253-006-0377-7
  38. Ha, S. C., S. Lee, J. Lee, H. T. Kim, H. J. Ko, K. H. Kim, and I. G. Choi (2011) Crystal structure of a key enzyme in the agarolytic pathway, $\alpha$-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem. Biophys. Res. Commun. 412: 238-244. https://doi.org/10.1016/j.bbrc.2011.07.073
  39. Seo, Y. B., Y. Lu, W. J. Chi, H. R. Park, K. J. Jeong, S. K. Hong, and Y. K. Chang (2014) Heterologous expression of a newly screened $\beta$-agarase from Alteromonas sp. GNUM1 in Escherichia coli and its application foragarose degradation. Process Biochem. 49: 430-436. https://doi.org/10.1016/j.procbio.2013.12.014
  40. Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  41. Yun, E. J., M. H. Shin, J. J. Yoon, Y. J. Kim, I. G. Choi, and K. H. Kim (2011) Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem. 46: 88-93. https://doi.org/10.1016/j.procbio.2010.07.019
  42. Razif Harun, R. and M. K. Danquah (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J. 168: 1079-1084. https://doi.org/10.1016/j.cej.2011.01.088
  43. Kim, D. H., S. B. Lee, and G. T. Jeong (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour. Technol. 161: 348-353. https://doi.org/10.1016/j.biortech.2014.03.078
  44. Yanagisawa, M., K. Nakamura, O. Ariga, and K. Nakasaki (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116. https://doi.org/10.1016/j.procbio.2011.08.001

피인용 문헌

  1. 효소종류에 따른 불등풀가사리 유래 다당류의 이화학적 특성 및 생리활성 vol.24, pp.3, 2014, https://doi.org/10.11002/kjfp.2017.24.3.455