DOI QR코드

DOI QR Code

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops

  • Zhao, Chao (College of Food Science, Fujian Agriculture and Forestry University) ;
  • Deng, Yunjin (College of Food Science, Fujian Agriculture and Forestry University) ;
  • Wang, Xingna (Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences) ;
  • Li, Qiuzhe (College of Food Science, Fujian Agriculture and Forestry University) ;
  • Huang, Yifan (College of Food Science, Fujian Agriculture and Forestry University) ;
  • Liu, Bin (College of Food Science, Fujian Agriculture and Forestry University)
  • Received : 2014.01.13
  • Accepted : 2014.05.06
  • Published : 2014.09.28

Abstract

In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

Keywords

References

  1. Alizadeh H, Teymouri F, Gilbert T, Dale B. 2005. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 124: 1133-1141. https://doi.org/10.1385/ABAB:124:1-3:1133
  2. Balan V, da Costa Sousa L, Chundawat SP, Vismeh R, Jones AD, Dale BE. 2008. Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. J. Ind. Microbiol. Biotechnol. 35: 293-301. https://doi.org/10.1007/s10295-007-0294-5
  3. Balat M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manage. 52: 858-875. https://doi.org/10.1016/j.enconman.2010.08.013
  4. Balat M, Balat H, Oz C. 2008. Progress in bioethanol processing. Prog. Energ. Combust. Sci. 34: 551-573. https://doi.org/10.1016/j.pecs.2007.11.001
  5. Balk M, Mehboob F, van Gelder AH, Rijpstra WI, Damste JS, Stams AJ. 2010. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage. Appl. Microbiol. Biotechnol. 88: 595-603. https://doi.org/10.1007/s00253-010-2788-8
  6. Betian HG, Linehan BA, Bryant MP, Holdeman LV. 1977. Isolation of a cellulolytic Bacteroides sp. from human feces. Appl. Environ. Microbiol. 33: 1009-1010.
  7. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19: 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
  8. Cai S, Li J, Hu FZ, Zhang K, Luo Y, Janto B, et al. 2010. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrateborne fibrolytic enzymes. Appl. Environ. Microbiol. 76: 3818- 3824. https://doi.org/10.1128/AEM.03124-09
  9. Camassola M, Dillon AJP. 2009. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind. Crops Prod. 29: 642-647. https://doi.org/10.1016/j.indcrop.2008.09.008
  10. Cardona CA, Quintero JA, Paz IC. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101: 4754-4766. https://doi.org/10.1016/j.biortech.2009.10.097
  11. Chaudhary N, Qazi JI. 2011. Lignocellulose for ethanol production: a review of issues relating to bagasse as a source material. Afr. J. Biotechnol. 10: 1270-1274.
  12. Chen SY, Dong XZ. 2004. Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Int. J. Syst. Evol. Microbiol. 54: 2257-2262. https://doi.org/10.1099/ijs.0.63212-0
  13. Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C. 2007. Potential of agricultural residues and hay for bioethanol production. Appl. Biochem. Biotechnol. 142: 276-290. https://doi.org/10.1007/s12010-007-0026-3
  14. Chung JH, Kim DS. 2012. Miscanthus as a potential bioenergy crop in East Asia. J. Crop Sci. Biotechnol. 15: 65-77. https://doi.org/10.1007/s12892-012-0023-0
  15. Dale BE, Allen MS, Laser M, Lynd LR. 2009. Protein feeds coproduction in biomass conversion to fuels and chemicals. Biofuel. Bioprod. Bioref. 3: 219-230. https://doi.org/10.1002/bbb.132
  16. Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, et al. 2012. Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13: 210. https://doi.org/10.1186/1471-2164-13-210
  17. French CE. 2009. Synthetic biology and biomass conversion: a match made in heaven. J. R. Soc. Interface 64: 547-558.
  18. Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, et al. 2011. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour. Technol. 102: 2702- 2711. https://doi.org/10.1016/j.biortech.2010.10.143
  19. Geng A, Zou G, Yan X, Wang Q, Zhang J, Liu F, et al. 2012. Expression and characterization of a novel metagenomederived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl. Microbiol. Biotechnol. 96: 951-962. https://doi.org/10.1007/s00253-012-3873-y
  20. Ge X, Burner DM, Xu J, P hillips GC, S ivakumar G. 2011. Bioethanol production from dedicated energy crops and residues in Arkansas. USA Biotechnol. J. 6: 66-73. https://doi.org/10.1002/biot.201000240
  21. Ghose TK. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  22. Hernandez PE, Ordonez JA, Sanz B. 1985. Utilization of cellobiose and D-glucose by Clostridium thermocellum ATCC- 27405. Rev. Esp. Fisiol. 41: 195-199.
  23. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. 2006. Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103: 11206-11210. https://doi.org/10.1073/pnas.0604600103
  24. Hungate RE. 1969. A roll tube method for cultivation of strict anaerobes. Methods Microbiol. 3B: 117-132.
  25. Kato S, Haruta S, Cui ZJ. 2004. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Microbiol. 54: 2043-2047. https://doi.org/10.1099/ijs.0.63148-0
  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
  27. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  28. Koskinen PEP, Lay CH, Beck SR, Tolvanen KE, Koksonen AH, Orlygsson J, et al. 2008. Bioprospecting thermophilic microorganisms from Icelandic hot springs for hydrogen and ethanol production. Energy Fuels 22: 134-140. https://doi.org/10.1021/ef700275w
  29. Lawson PA, Song Y, Liu C, Molitoris DR, Vaisanen ML, Collins MD, Finegold SM. 2004. Anaerotruncus colihominis gen. nov., sp. nov., from human faeces. Int. J. Syst. Evol. Microbiol. 54: 413-417. https://doi.org/10.1099/ijs.0.02653-0
  30. Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energ. Combust. Sci. 38: 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
  31. Liu B, Zhang N, Zhao C, Lin BX, Xie LH, Huang YF. 2012. Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7. J. Microbiol. Biotechnol. 22: 1391-1397.
  32. Liu CC, X iao L, J iang JX, Wang WX, Gu F, S ong DL, et al. 2013. Biomass properties from different Miscanthus species. Food Energy Security DOI: 10.1002/fes3.19.
  33. Maki M, Leung KT, Qin W. 2009. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5: 500-516.
  34. McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ. 2007. Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary. UK Environ. Microbiol. 9: 165-176. https://doi.org/10.1111/j.1462-2920.2006.01125.x
  35. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  36. Peacock JP, Cole JK, Murugapiran SK, Dodsworth JA, Fisher JC, Moser DP, Hedlund BP. 2013. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment. PLoS One 8: e59927. https://doi.org/10.1371/journal.pone.0059927
  37. Rani KS, Swamy MV, Seenayya G. 1997. Increased ethanol production by metabolic modulation of cellulose fermentation in Clostridium thermocellum. Biotechnol. Lett. 19: 819-823. https://doi.org/10.1023/A:1018312931542
  38. Rincon MT, Dassa B, Flint HJ, Travis AR, Jindou S, Borovok I, et al. 2010. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD1. PLoS One 5: e12476. https://doi.org/10.1371/journal.pone.0012476
  39. Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renew. Energ. 37: 19-27. https://doi.org/10.1016/j.renene.2011.06.045
  40. Sigurbjornsdottir M-A, Orlygsson J. 2012. Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring. Appl. Energ. 97: 785-791. https://doi.org/10.1016/j.apenergy.2011.11.035
  41. Sizova MV, Izquierdo JA, Panikov NS, Lynd LR. 2011. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl. Environ. Microbiol. 77: 2282-2291. https://doi.org/10.1128/AEM.01219-10
  42. Syutsubo K, Nagaya Y, Sakai S, Miya A. 2005. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process. Water Sci. Technol. 52: 79-84.
  43. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
  45. Tsuey LS, Ariff AB, Mohamad R, Rahim RA. 2006. Improvements of GC and HPLC analyses in solvent (acetonebutanol- ethanol) fermentation by Clostridium saccharobutylicum using a mixture of starch and glycerol as carbon source. Biotechnol. Bioproc. E 11: 293-298. https://doi.org/10.1007/BF03026243
  46. Warnick TA, Methe BA, Leschine SB. 2002. Clostridium phytofermentans sp. nov. a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol. 52: 1155-1160. https://doi.org/10.1099/ijs.0.02125-0
  47. Watanabe K, Teramoto M, Futamata H, Harayama S. 1998. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol. 64: 4396-4402.
  48. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  49. Wiegel J, Ljungdahl LG. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128: 343-348. https://doi.org/10.1007/BF00405910
  50. Wilson K. 1990. Preparation of genomic DNA from bacteria, pp. 241-245. In Ausubel FM, Brent R (eds.). Current Protocols in Molecular Biology. Greene Publ. Assoc. and Wiley Interscience; New York.
  51. Wolin EA, Wolin MJ, Wolfe RS. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886.
  52. Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananukul W. 2012. The potential of cellulosic ethanol production from grasses in Thailand. J. Biomed. Biotechnol. 303748.
  53. Xi Q, Jezowski S. 2004. Plant resources of Triarrhena and Miscanthus species in China and its meaning for Europe. Plant Breed. Seed Sci. 49: 63-77.
  54. Yoon MH, Ten LN, Im WT, Lee ST. 2008. Cellulomonas chitinilytica sp. nov. a chitinolytic bacterium isolated from cattle-farm compost. Int. J. Syst. Evol. Microbiol. 58: 1878-1884. https://doi.org/10.1099/ijs.0.64768-0
  55. Zhang K, Dong X. 2009. Selenomonas bovis sp. nov., isolated from yak rumen contents. Int. J. Syst. Evol. Microbiol. 59: 2080-2083. https://doi.org/10.1099/ijs.0.007641-0
  56. Zhao C, Ruan LW. 2011. Biodegradation of Enteromorpha prolifera by mangrove degrading micro-consortium with physical-chemical pretreatment. Appl. Microbiol. Biotechnol. 92: 709-916. https://doi.org/10.1007/s00253-011-3384-2
  57. Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deang Y. 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng. 99: 1320-1328. https://doi.org/10.1002/bit.21712

Cited by

  1. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis vol.8, pp.None, 2014, https://doi.org/10.1186/s13068-014-0186-7
  2. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila vol.26, pp.4, 2016, https://doi.org/10.4014/jmb.1601.01013
  3. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane vol.26, pp.7, 2016, https://doi.org/10.4014/jmb.1602.02074
  4. Thermophilic bacterial communities inhabiting the microbial mats of “indifferent” and chalybeate (iron‐rich) thermal springs: Diversity and biotechnological analysis vol.7, pp.2, 2014, https://doi.org/10.1002/mbo3.560