DOI QR코드

DOI QR Code

Simulation of Spatio-Temporal Distributions of Winter Soil Temperature Taking Account of Snow-melting and Soil Freezing-Thawing Processes

융설과 토양의 동결-융해 과정을 고려한 겨울철 토양온도의 시공간 분포 모의

  • Kwon, Yonghwan (Watershed Environment Research Unit, HydroCore Ltd.) ;
  • Koo, Bhon K. (Watershed Environment Research Unit, HydroCore Ltd.)
  • Received : 2014.08.19
  • Accepted : 2014.09.24
  • Published : 2014.10.31

Abstract

Soil temperature is one of the most important environmental factors that govern hydrological and biogeochemical processes related to diffuse pollution. In this study, considering the snowmelting and the soil freezing-thawing processes, a set of computer codes to estimate winter soil temperature has been developed for CAMEL (Chemicals, Agricultural Management and Erosion Losses), a distributed watershed model. The model was calibrated and validated against the field measurements for three months at 4 sites across the study catchment in a rural area of Yeoju, Korea. The degree of agreement between the simulated and the observed soil temperature is good for the soil surface ($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$). As for the subsurface soils, however, the simulation results are not as good as for the soil surface ($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$) which is considered resulting from vertically-homogeneous soil textures assumed in the model. The model well simulates the blanket effect of snowpack and the latent heat flux in the soil freezing-thawing processes. Although there is some discrepancy between the simulated and the observed soil temperature due to limitations of the model structure and the lack of data, the model reasonably well simulates the temporal and spatial distributions of the soil temperature and the snow water equivalent in accordance with the land uses and the topography of the study catchment.

토양온도는 비점오염과 관련된 수문학적 및 생지화학적 과정에 영향을 주는 중요한 물리적 환경인자 중 하나이다. 이 연구에서는 분포형 유역모델인 CAMEL(Chemicals, Agricultural Management and Erosion Losses)의 겨울철 토양온도 모의성능을 개선하기 위해서 융설과 토양 동결-융해 모델을 개발하였으며, 경기도 여주에 위치한 시험유역의 4개 지점에서 3개월 동안 관측한 토양온도 자료를 사용하여 모델을 보 검정하였다. 모의 결과, 표층 토양온도에 대해서는 모델이 토양온도의 시계열 변화를 비교적 잘 재현하는 반면($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$), 하부토양층 온도에 대해서는 경우에 따라 모델의 예측오차가 다소 크게 나타났는데($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$), 이것은 모델에서 토양 깊이별 토성을 동일한 것으로 가정한 것이 주요 원인인 것으로 판단된다. 한편, 개발된 모델은 융설에 의한 단열효과와 토양 동결-융해 과정에서 유입 또는 방출되는 잠열흐름의 영향으로 토양온도의 진폭이 감소하는 현상을 잘 모의하고 있다. 비록 모델 구조의 한계와 자료의 부족으로 토양온도에 대한 다소의 예측오차가 발생하였지만, 개발된 토양온도 모델은 시험유역의 토지이용 및 지형에 따른 토양온도와 적설상당수량의 시공간적 분포를 합리적으로 잘 모의하는 것으로 사료된다.

Keywords

References

  1. Agehara, S., and Warncke, D.D. (2005). "Soil moisture and temperature effects on nitrogen release from organic nitrogen sources." Soil Science Society of America Journal, Vol. 69, pp. 1844-1855. https://doi.org/10.2136/sssaj2004.0361
  2. Anderson, E.A. (1976). A point energy and mass balance model of snowcover. NOAA Tech. Rep. NWS 19. US Dept. of Commerce, Silver Spring, MD. p. 150.
  3. Bremner, J.M., and Zantua, M.I. (1975). "Enzyme activity in soils at subzero temperatures." Soil Biology and Biochemistry, Vol. 7, No. 6, pp. 383-387. https://doi.org/10.1016/0038-0717(75)90054-1
  4. Chantigny, M.H., Angers, D.A., and Rochette, P. (2002). "Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils." Soil Biology and Biochemistry, Vol. 34, No. 4, pp. 509-517. https://doi.org/10.1016/S0038-0717(01)00209-7
  5. Clark, K., Chantigny, M.H., Angers, D.A., Rochette, P., and Parent, L.-E. (2009). "Nitrogen transformations in cold and frozen agricultural soils following organic amendments." Soil Biology and Biochemistry, Vol. 41, No, 2, pp. 348-356. https://doi.org/10.1016/j.soilbio.2008.11.009
  6. Cookson, W.R., Cornforth, I.S., and Rowarth, J.S. (2002). "Winter soil temperature (2-$15^{\circ}C$) effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study." Soil Biology and Biochemistry, Vol. 34, No. 10, pp. 1401-1415. https://doi.org/10.1016/S0038-0717(02)00083-4
  7. Dessureault-Rompre, J., Zebarth, B.J., Georgallas, A., Burton, D.L., Grant, C.A., and Drury, C.F. (2010). "Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils." Geoderma, Vol. 157, No. 3-4, pp. 97-108. https://doi.org/10.1016/j.geoderma.2010.04.001
  8. Fukusako, S. (1990). "Thermophysical properties of ice, snow, and sea ice." Int. J. Thermophys., Vol. 11, No. 2, pp. 353-372. https://doi.org/10.1007/BF01133567
  9. Gaumont-Guay, D., Black, T.A., Griffis, T.J., Barr, A.G., Jassal, R.S., and Nesic, Z. (2006). "Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand." Agricultural and Forest Meteorology, Vol. 140, No. 1-4, pp. 220-235. https://doi.org/10.1016/j.agrformet.2006.08.003
  10. Gongalsky, K.B., Persson, T., and Pokarzhevskii, A.D. (2008). "Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test." Applied Soil Ecology, Vol. 39, No. 1, pp. 84-90. https://doi.org/10.1016/j.apsoil.2007.11.007
  11. Huber, W.C., and Dickinson, R.E. (1988). Storm water management model, version 4: user's manual. EPA/600/3-88/001a, NTIS PB88-236641/AS. US Environmental Protection Agency, Athens, Georgia, pp. 350-379.
  12. Kirschbaum, M.U.F. (1995). "The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage." Soil Biology and Biochemistry, Vol. 27, No. 6, pp. 753-760. https://doi.org/10.1016/0038-0717(94)00242-S
  13. Kokkonen, T., Koivusalo, H., Lauren, A., Penttinen, S., Starr, M., Kellomaki, S., and Finer, L. (2006). "Implications of processing spatial data from a forested catchment for a hillslope hydrological model." Ecological Modelling, Vol. 199, No. 4, pp. 393-408. https://doi.org/10.1016/j.ecolmodel.2006.04.026
  14. Kongoli, C.E., and Bland, W.L. (2000). "Long-term snow depth simulations using a modified atmosphere-land exchange model." Agricultural and Forest Meteorology, Vol. 104. No. 4, pp. 273-287. https://doi.org/10.1016/S0168-1923(00)00169-6
  15. Koo, B.K., Dunn, S.M., and Ferrier, R.C. (2005). "A distributed continuous simulation model to identify critical source areas of phosphorus at the catchment scale: model description." Hydrology and Earth System Sciences Discussions, Vol. 2, pp. 1359-1404. https://doi.org/10.5194/hessd-2-1359-2005
  16. Kwon, Y.H., Koo, B.K., and Lee, D. (2009). Estimation of soil and surface water temperature at the catchment scale. Proceedings 13th International Conference on Diffuse Pollution and Integrated Watershed Management (IWA DIPCON 2009), Seoul, Korea, pp. 234-235.
  17. Letsinger, S.L., and Olyphant, G.A. (2007). "Distributed energy-balance modeling of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains, Montana, USA." Journal of Hydrology, Vol. 336, No. 1-2, pp. 48-60. https://doi.org/10.1016/j.jhydrol.2006.12.012
  18. Liu, X., Rees, S.J., and Spitler, J.D. (2007). "Modeling snow melting on heated pavement surfaces. Part I: Model development." Applied Thermal Engineering, Vol. 27, No. 5-6, pp. 1115-1124. https://doi.org/10.1016/j.applthermaleng.2006.06.017
  19. Malhi, S.S., and McGill, W.B. (1982). "Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration." Soil Biology and Biochemistry, Vol. 14, No. 4, pp. 393-399. https://doi.org/10.1016/0038-0717(82)90011-6
  20. Niu, G.-Y., and Yang, Z.-L. (2006). "Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale." Journal of Hydrometeorology, Vol. 7, No. 5, pp. 937-952. https://doi.org/10.1175/JHM538.1
  21. Oleson, K.W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., Thornton, P., Vertenstein, M., Yang, Z.-L., and Zeng, X. (2004). Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
  22. Papatheodorou, E.M., Argyropoulou, M.D., and Stamou, G.P. (2004). "The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes." Applied Soil Ecology, Vol. 25, No. 1, pp. 37-49. https://doi.org/10.1016/S0929-1393(03)00100-8
  23. Pape R., and Loffler, J. (2004). "Modelling spatio-temporal near-surface temperature variation in high mountain landscapes." Ecological Modelling, Vol. 178, No. 3-4, pp. 483-501. https://doi.org/10.1016/j.ecolmodel.2004.02.019
  24. Rover, M., Heinemeyer, O., and Kaiser, E.-A. (1998). "Microbial induced nitrous oxide emissions from an arable soil during winter." Soil Biology and Biochemistry, Vol. 30, No. 14, pp. 1859-1865. https://doi.org/10.1016/S0038-0717(98)00080-7
  25. Schmidt, I.K., Jonasson, S., and Michelsen, A. (1999). "Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment." Applied Soil Ecology, Vol. 11, No. 2-3, pp. 147-160. https://doi.org/10.1016/S0929-1393(98)00147-4
  26. Semadeni-Davies, A.F. (2000). "Representation of snow in urban drainage models." Journal of Hydrologic Engineering, Vol. 5, No. 4, pp. 363-370. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(363)
  27. Valeo, C., and Ho, C.L.I. (2004). "Modelling urban snowmelt runoff." Journal of Hydrology, Vol. 299, No. 3-4, pp. 237-251. https://doi.org/10.1016/S0022-1694(04)00368-3
  28. Waldrop, M.P., and Firestone, M.K. (2004). "Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions." Biogeochemistry, Vol. 67, No. 2, pp. 235-248. https://doi.org/10.1023/B:BIOG.0000015321.51462.41
  29. Walter, M.T., Brooks, E.S., McCool, D.K., King, L.G., Molnau, M., and Boll, J. (2005). "Process-based snowmelt modeling: does it require more input data than temperature-index modeling?" Journal of Hydrology, Vol. 300, No. 1-4, pp. 65-75. https://doi.org/10.1016/j.jhydrol.2004.05.002
  30. Zhang, Y., Wang, S., Barr, A.G., and Black, T.A. (2008). "Impact of snow cover on soil temperature and its simulation in a boreal aspen forest." Cold Regions Science and Technology, Vol. 52, No. 3, pp. 355-370. https://doi.org/10.1016/j.coldregions.2007.07.001

Cited by

  1. Development and evaluation of the Soil and Water Temperature Model (SWTM) for rural catchments vol.553, 2017, https://doi.org/10.1016/j.jhydrol.2017.08.017