DOI QR코드

DOI QR Code

Application of Normalized Vegetation Index for Estimating Hydrological Factors in the Korea Peninsula from COMS

한반도 지역에서의 수문인자산정을 위한 식생 정보 분석 및 활용 ; 천리안 위성을 이용하여

  • Park, Jongmin (Department of Water Resources, Graduate Schoool of Water Resources, Sungkyunkwan University) ;
  • Baik, Jongjin (Department of Civil & Environmental Engineering, Sungkyunkwan University) ;
  • Kim, Seong-Joon (Department of Civil and Environmental System Engineering, Konkuk University) ;
  • Choi, Minha (Department of Water Resources, Graduate Schoool of Water Resources, Sungkyunkwan University)
  • 박종민 (성균관대학교 수자원대학원 수자원학과) ;
  • 백종진 (성균관대학교 건설환경시스템공학과) ;
  • 김성준 (건국대학교 생명환경과학과 사회환경시스템공학과) ;
  • 최민하 (성균관대학교 수자원대학원 수자원학과)
  • Received : 2014.07.29
  • Accepted : 2014.09.23
  • Published : 2014.10.31

Abstract

Normalized Difference Vegetation Index (NDVI) used as input data for various hydrologic models plays a key role in understanding the variation of Hydrometeological parameters and Interaction between surface and atmosphere. Many studies have been conducted to estimate accurate remotely-sensed NDVI using spectral characteristics of vegetation. In this study, we conducted comparative analysis between Communication, Ocean and Meteorological Satellite and MOderate-Resolution Imaging Spectroradiometer (MODIS) NDVI. For comparison, Maximum Value Composite (MVC) was used to estimate 8-day and 16-day composite COMS NDVI. Both 8-day and 16-day COMS NDVI showed high statistical results compared with MODIS NDVI. Based on the results in this study, it can be concluded that COMS can be widely applicable for further ecological and hydrological studies.

정규식생지수 (Normalized Difference Vegetation Index)는 각종 수문모델, 지표-대기 모델에 입력 자료로 사용되는 인자로 대기와 지표 사이의 에너지 교환 및 수문기상학적인자의 변동성을 파악하는데 매우 중요하다. 이에따라, 식생고유의 분광반사 특성을 이용하여 인공위성으로 관측하는 NDVI 값의 정확한 모의를 위한 연구가 진행되고 있다. 본 연구에서는 국내 최초의 정지궤도위성인 Communication, Ocean and Meteorological Satellite (COMS)에서 산출된 정규식생지수의 적용성을 판단하기 위해 Maximum Value Composite (MVC) 방법을 활용하여 산정한 16일 단위, 8일 단위의 정규식생지수와 MODerate-resolution Imaging Spectro-radiometer (MODIS) 센서에서 관측된 정규식생지수와 비교 검증을 실시하였다. 그 결과 16일 단위와 8일 단위 NDVI 모두 좋은 결과를 나타내었다. 이러한 결과를 토대로 COMS의 활용 가능성을 확인할 수 있었으며 추후 수문 생태학적 연구에 중요한 자료로 사용될 수 있을 것이다.

Keywords

References

  1. Baek, J.J., Sur, C.Y., and Choi, M.H. (2012). "Assessment of Outgoing Longwave Radiation using COMS: Cheongmi and Sulma Catchments." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 465-476. https://doi.org/10.3741/JKWRA.2013.46.5.465
  2. Baek, J.J., Byun, K.H., Kim, D.K., and Choi, M.H. (2013). "Assessment of Solar Insolation from COMS : Sulma and Cheongmi Watershed." Korean Journal of Remote Sensing, Vol. 29, No. 1 pp. 137-150. https://doi.org/10.7780/kjrs.2013.29.1.13
  3. Baek, J.J., and Choi, M.H. (2012) "Availabilirty of Land Surface Temperature from the COMS in the Korea Peninsula." Journal of Korea Water Resources Association, Vol. 45, pp. 755-765. https://doi.org/10.3741/JKWRA.2012.45.8.755
  4. Birth, G.S., and McVey, G. (1968). "Measuring the color of growing turf with a reflectance spectrotadiometer." Agronomy Journal, Vol. 60, pp. 640-643. https://doi.org/10.2134/agronj1968.00021962006000060016x
  5. Brown, M.E., Pinzon, J.E., Didan, K., Morisette, J.T., and Tucker, C.J. (2006). "Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ Sensors." IEEE Transactions on geoscience and remote sensing, Vol. 40, No. 7, pp. 1787-1793.
  6. Eidenshink, J.C., and Faundeen, J.L. (1994). "The 1 km AVHRR global land data set: First stages in implementation." International Journal of Remote Sensing, Vol. 15, No. 17, pp. 257-277.
  7. Han, H.J., Ryu, J.H., Yang, C.S., Cho, S., and Ahn, Y.H. (2010). Preleminary analysis of data processing for geostationary ocean color remote sensing data from GOCI/COMS. International Geoscience and Remote Sensing Symposium (IGARSS), pp.3700-3703.
  8. Hatfield, J.L., and Pinter Jr, P.J. (1993). "Remote Sensing for crop protection." Crop Protection, Vol. 12, No. 6, pp. 403-413. https://doi.org/10.1016/0261-2194(93)90001-Y
  9. Heumann, B.W., Seaquist, J.W., Eklundh, L., and Jonsson, P. (2007). "AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982-2005." Remote Sensing of Environment, Vol. 108, pp. 385-392. https://doi.org/10.1016/j.rse.2006.11.025
  10. Hmimina, G., Dufrene, E., Pontailler, J.Y., Delpierre, N., Aubinet, M., Caquet, B., de Grandcourt, A. Burban, B., Flechard, C.,Granier, A. Gross, P., Heinesch, B,. Longdoz, B., Moureaux, C., Ourcival, J.M., Rambal, S., Saint Andre, L., and Soudani, K. (2013). "Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements." Remote Sensing of Environment, Vol. 132, pp. 145-158. https://doi.org/10.1016/j.rse.2013.01.010
  11. Hong, S.J., Hendrickx, J.M.H., and Borchers, B. (2011). "Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250m) to Landsat (30m) scales." International Journal of Remote Sensing, Vol. 32, No. 21, pp. 6457-6477. https://doi.org/10.1080/01431161.2010.512929
  12. Huemmrich, K.F., Privette, J.L., Mukelabia, M., Myneni, R.B., and Knyazikhin, Y. (2005). "Time-series validation of MOIDS land biophysical products in a Kalahari woodland, Africa." International Journal of Remote Sensing, Vol. 26, No. 19, pp. 4381-4398. https://doi.org/10.1080/01431160500113393
  13. International Panel on Climate Change (2013). Climate change 2013 The Physical Science Basis Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
  14. Jiang, Z., Huete, A.R., Didan, K., and Miura, T. (2008). "Development of a two-band enhanced vegetation index without a blue band." Remote Sensing of Environment, Vol. 112, pp. 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006
  15. Kang, D.Y., Oh, J.H., and Kwon, W.T. (2003). "The research on the trends of climate change by observatory records in the recent Korean peninsula." Journal of Korean Meteorology, Vol. 13, pp. 396-397.
  16. Kimura, R., Okada, S., Miura, H., and Kamichika, M. (2004). "Relationships among the leaf area index, moistrue availability, and spectral reflectance in an upland rice field." Agricultural Water Management, Vol. 69, pp. 83-100. https://doi.org/10.1016/j.agwat.2004.04.009
  17. Kwon, H.J., and Kim, J. (2010). "KoFlux's Progress : Background, Status and Direction." Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 4, pp. 241-263. https://doi.org/10.5532/KJAFM.2010.12.4.241
  18. Lee, S.H., Ahn, J.S., Kim, H.D., and Hwang, S.J. (2009). "Comparison Study on the Estimation Algorithm of Land Surface Temperature for MODIS Data at the Korean Peninsula." Journal of Environmental Science, Vol. 18, No. 4, pp. 355-367. https://doi.org/10.5322/JES.2009.18.4.355
  19. Maselli, F. (2010). "Use of MODIS NDVI data to improve forest-area estimation." International Journal of Remote Sensing, Vol. 32, No. 21, 2011, pp. 6379-6393. https://doi.org/10.1080/01431161.2010.510490
  20. Mellor, A., Haywood, A., Stone, C., and Jones, S. (2013). "The performance of Random Forest in an Operational setting for Large Area Sclerophyll Forest Classification." Remote Sensing, Vol. 5, pp. 2838-2856. https://doi.org/10.3390/rs5062838
  21. Miliaresis, G.C. (2009). "Regional thermal and terrain modelling of the afar depression from MODIS multitemporal monthly night LST data." International Journal of Remote Sensing, Vol. 30, No. 9, pp. 2429-2436. https://doi.org/10.1080/01431160802562271
  22. Park, S.M. (2013). Feasibility Analysis of Spring Drought Detection using GOCI NDVI. M.S. dissertation, Inha University, Incheon, Korea, pp. 1-55.
  23. Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. (1973). Monitoring vegetation systems in the great plains with ERTS. Proceedings of the Third Earth Resources Satellite-1 Symposium(Maryland: NASA SP-351), pp. 309-317.
  24. Rouse, J.W., Jr., Hass, R.H., Schell, J.A., and Deering, D.W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. 3rd ETRS Symposium, NASA, SP-351 I, pp. 309-317.
  25. Ryu, J.H., Han, H.J., Cho, S.I., Park, Y.J., and Ahn, Y.H. (2012). "Overview of geostationary ocean color imager (GOCI) and GOCI data processing system(GDPS)." Ocean Science Journal, Vol. 47, No. 3, pp. 223-233. https://doi.org/10.1007/s12601-012-0024-4
  26. Sun, D., and Kafatos, M. (2007). "Note on the NDVI-LST relationship and the use of remperature-related drought indices over North America." Geophysical Research Letters, Vol. 34, No. 24, pp. 1-4.
  27. Van Leeuwen, T.T., Frank, A.J., Jin, Y., Smyth, P., Goulden, M.L., Van der Werf, G,R., and Randerson, J.T. (2011). "Optimal use of land surface temperature data to detect changes in tropical forest cover." Journal of Geophysical Research, Vol. 116, G02002, doi:10.1029/2010JG001488.
  28. Wardlow, B.D., and Egbert, S.L. (2008). "Large-area crop mapping using time-series MODIS 250m NDVI data : An assessment for the U.S. Central Great Plains." Remote Sensing of Environment, Vol. 112, No. 3, pp. 1096-1116. https://doi.org/10.1016/j.rse.2007.07.019