DOI QR코드

DOI QR Code

Optimization of Medium Components for the Production of Antagonistic Lytic Enzymes Against Phytopathogenic Fungi and Their Biocontrol Potential

  • Lee, Yong Seong (Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Neung, Saophuong (Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Park, Yun Suk (Purne Co., Ltd., Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Kil Yong (Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • 투고 : 2014.08.18
  • 심사 : 2014.08.24
  • 발행 : 2014.08.30

초록

In this paper, fractional factorial screening design (FFSD) and central composition design (CCD) were used to optimize the medium components for producing chitinase and gelatinase by Lysobacter capsici YS1215. Crab shell powder, nutrient broth and gelatin were proved to have significant effects on chitinase and gelatinase activity by FFSD first. An optimal medium was obtained by using a three factor CCD, which consisted of nutrient broth of $2.0gL^{-1}$, crab shell powder of $2.0gL^{-1}$ and gelatin of $1.0gL^{-1}$, respectively with the highest chitinase activity ($3.34UmL^{-1}$) and gelatinase activity ($14.15UmL^{-1}$). This value was 3.76 and 1.11 fold of the chitinase and gelatinase activity, respectively, compared to the lowest productive medium in the design matrix. In investigating potential of these enzymes partially purified from L. capsici YS1215 for biotechnological use, the crude enzymes was found to be inhibition against pathogenic fungal mycelia: Colletotrichum gleosporioides, Phytophthora capsici, and Rhizoctonia solani. In this study, we demonstrated the optimal medium for producing the chitinolytic and gelatinolytic enzymes by the strain YS1215 and the role of their enzymes that may be useful for further development of a biotechnological use and agricultural use for biological control of phytopathogenic fungi.

키워드

참고문헌

  1. Akolkar, A., N. Bharambe, S. Trivedi, and A, Desai. 2009. Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1(1). Lett. Appl. Microbiol. 48:77-83. https://doi.org/10.1111/j.1472-765X.2008.02492.x
  2. Bird, A.F.and M.A. McClure. 1976. The tylenchid (nematode) egg shell: structure, composition and permeability. Parasitology. 72:19-28. https://doi.org/10.1017/S0031182000043158
  3. Chen, J., W.H. Moore, G.Y. Yuen, D. Kobayashi, and E.P. Caswell-Chen. 2006. Influence of Lysobacter enzymogenes Strain C3 on Nematodes. J. Nematol. 38(2):233-239.
  4. Crini, G., E. Guibal, M. Morcellet, G. Torr, and P.M. Badot. 2009. Chitine et chitosane. Preparation, proprietes et principales applications. In: chitine et chitosane. Du biopolymere a l'application, 1st Ed., Presses universitaires de Franche-Comte, France. p. 19-54.
  5. Ghorbel-Bellaaj, O., L. Manni, K. Jellouli, N. Hmidet, and M. Nasri. 2012. Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design. Biochemical and molecular characterization of the chitinase. Ann. Microbiol. 62:1255-1268. https://doi.org/10.1007/s13213-011-0371-x
  6. Goodrich, J.D. and T.W. Winter. 2007. $\beta$-Chitin Nanocrystals Prepared from shrimp shells and their specific surface area measurement. Biomacromolecules. 8:252-257. https://doi.org/10.1021/bm0603589
  7. Gunaraj, V. and N. Murugan. 1999. Application of response surface methodologies for predicting weld base quality in submerged arc welding of pipes. J. Mater. Process Technol. 88:266-275. https://doi.org/10.1016/S0924-0136(98)00405-1
  8. Han, Y., Z. Li, X. Miao, and F. Zhang. 2008. Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochem. 43(10):1088-1093. https://doi.org/10.1016/j.procbio.2008.05.014
  9. Islam, M.T. 2010. Mode of antagonism of a biocontrol bacterium Lysobacter sp. SB-K88 toward a damping-off pathogen Aphanomyces cochlioides. World J. Microbiol. Biotechnol. 26:629-637. https://doi.org/10.1007/s11274-009-0216-y
  10. Jamilah, B., and K.G. Harvinder. 2002. Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem. 77:81-84. https://doi.org/10.1016/S0308-8146(01)00328-4
  11. Kaushik, R., S. Saran, J. Isar, and R.K. Saxena. 2006. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol.Catal. B.Enzym. 40:121-126. https://doi.org/10.1016/j.molcatb.2006.02.019
  12. Kincl, M., S. Turk, and F. Vrecer. 2005. Application of response surface methodology in development and optimization of drug release method. Int. J. Pharm. 291:39-49. https://doi.org/10.1016/j.ijpharm.2004.07.041
  13. Kurita, K. 2006. Chitin and Chitosan: Functional biopolymers from marine crustaceans. Marine.Biotechnol. 8:203-226. https://doi.org/10.1007/s10126-005-0097-5
  14. Lee, Y.S., M. Anees, H.N. Hyun, and K.Y. Kim. 2013. Biocontrol potential of Lysobacter antibioticus HS124 against the root-knot nematode, Meloidogyne incognita, causing disease in tomato. Nematology. 15(5):545-555. https://doi.org/10.1163/15685411-00002700
  15. Liang, T.W., Y.Z. Chen, Y.H. Yen, and S.L. Wang. 2007. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem. 42:527-534. https://doi.org/10.1016/j.procbio.2006.10.005
  16. Lingappa, Y., and J.L. Lockwood. 1962. Chitin media for selected isolation and culture of actinomycetes. Phytopathology. 52:317-323.
  17. Lopes, M.A., D.S. Gomes, M.G. Koblitz, C.P. Pirovani, J.C. Cascardo, A. Goes-Neto, and F. Micheli. 2008. Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa. Mycol. Res. 112(3): 399-406. https://doi.org/10.1016/j.mycres.2007.10.017
  18. Mandl, I., J.D. MacLennan, E.L. Howes, R.H. DeBellis, and A. Sohler. 1953.Isolation and characterization of proteinase and collagenase from Cl. Histolyticum. J. Clin. Investig. 32:1323-1329. https://doi.org/10.1172/JCI102861
  19. Moore, S., and W.H. Stein. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176:367-388.
  20. Myers, H.M., and D.C. Montgomery. 2002.Response surface methodology: process and product optimization using designed experiments. 2nd Ed. New York: A Wiley inter-science publication.
  21. Nawani, N.N., and B.P. Kapadnis. 2005. Optimization of chitinase production using statistics based experimental designs. Process Biochem. 40(2):651-660. https://doi.org/10.1016/j.procbio.2004.01.048
  22. Ordentlich, A., Y. Elad, and I. Chet.1988.The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology. 78:84-88.
  23. Pareek, N., R.P. Singh, and S. Ghosh. 2011. Optimization of medium composition for enhanced chitin deacetylase production by mutant Penicillium oxalicum SAEM-51 using response surface methodology under submerged fermentation. Process Biochem. 46(8):1693-1697. https://doi.org/10.1016/j.procbio.2011.05.002
  24. Park, J.H., R. Kim, Z. Aslam, C.O. Joen, and Y.R. Chung. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int. J. Syst. Evol. Microbiol. 58:387-392. https://doi.org/10.1099/ijs.0.65290-0
  25. Patil, R.S., V. Ghomade, and M.V. Deshpande. 2000. Chitinolytic enzymes: an exploration. Enzym. Microb. Tech. 26:473-483. https://doi.org/10.1016/S0141-0229(00)00134-4
  26. Pelinski, R.P. Cerrutti, M.L. Ponsone, S. Chulze, and M. Galvagno. 2012. Statistical ptimization of simple culture conditions to produce biomass of an ochratoxigenic mould biocontrol yeast strain. Lett. Appl. Microbiol. 54(5):377-382. https://doi.org/10.1111/j.1472-765X.2012.03217.x
  27. Postma, J., L.H. Stevens, G.L. Wiegers, E. Davelaar, E.H. Nijhuis. 2009. Biological control of Pythium aphanidermarum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan. Biol. Contr. 48:301-309. https://doi.org/10.1016/j.biocontrol.2008.11.006
  28. Rattray, F.P., P.F. Fox, and A. Healy.1997.Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine b-casein. Appl. Environmental. Microbiol. 63:2468-2471.
  29. Regev, A., M. Keller, N. Strizhov, B. Sheh, E. Prudovsky, I. Chet, I. Ginzberg, Z. Koncz-Kalman, C. Koncz, J. Schell, and A. Zilberstein. 1996. Synergistic activity of a Bacillus thuringiensis $\delta$-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae Appl. Environ. Microbiol. 62:3581-3586.
  30. Siddiqui, I.A., D. Haas, and S. Heeb. 2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode, Meloidogyne incognita. Appl. Environ. Microbiol. 71:5646-5649. https://doi.org/10.1128/AEM.71.9.5646-5649.2005
  31. Singh, A.K., G. Mehta, and H.S. Chhatpar. 2009. Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Lett. Appl. Microbiol. 49(6):708-14. https://doi.org/10.1111/j.1472-765X.2009.02731.x
  32. Vaidya, R., P. Vyas, and H.S. Chhatpar. 2003. Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Enzym. Microb. Tech. 33(1):92-96. https://doi.org/10.1016/S0141-0229(03)00100-5
  33. Wang, S.L., P.Y. Yeh. 2006. Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochem. 41:1545-1552. https://doi.org/10.1016/j.procbio.2006.02.018