DOI QR코드

DOI QR Code

Mobilization of Heavy Metals in Contaminated Soils induced by Bioaugmentation of Shewanella xiamenensis HM14

  • Walpola, Buddhi Charana (Department of Crop Science, Faculty of Agriculture, University of Ruhuna) ;
  • Arunakumara, K.K.I.U. (Department of Crop Science, Faculty of Agriculture, University of Ruhuna) ;
  • Song, Jun-Seob (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Chan-Jung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 투고 : 2014.08.11
  • 심사 : 2014.08.24
  • 발행 : 2014.08.30

초록

A bacterial strain with the potential ability to solubilize heavy metals was isolated from heavy metal contaminated soils collected from abandoned mines of Boryeong area in South Korea. The bacterial strain with the highest degree of metal resistance was shown to have close proximity with Shewanella xiamenensis FJ589031, according to 16S rRNA sequence analysis, and selected for investigating the mobilization of metals in soil or plant by the strain. The strain was found to be capable of solubilizing metals both in the absence and in the presence of metals (Co, Pb and Cd). Metal mobilization potential of the strain was assessed in a batch experiment and the results showed that inoculation could increase the concentrations of water soluble Co, Pb and Cd by 48, 34 and 20% respectively, compared with those of non-inoculated soils. Bacterial-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 24, 18 and 16% respectively in Co, Pb and Cd contaminated soils. Moreover, enhanced accumulation of Co, Pb and Cd in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the strain. Plant growth promotion and metal mobilizing potential of the strain suggest that the strain could effectively be employed in enhancing phytoextraction of Co, Pb and Cd from contaminated soils.

키워드

참고문헌

  1. Abou-Shanab, R.A.I., J.S. Angle, and R.L. Chaney. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol. Biochem. 38:2882-2889. https://doi.org/10.1016/j.soilbio.2006.04.045
  2. Abou-Shanab, R.A.I., P. van Berkum, and J.S. Angle. 2007. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere. 68:360-367. https://doi.org/10.1016/j.chemosphere.2006.12.051
  3. Arunakumara, K.K.I.U. 2011. Use of Crop Plants for Removal of Toxic Metals, pp. 439-457. In Khan MS, Zaidi A, Goel R, and Mussarrat J. (eds.),Bio-management of Metal Contaminated Soils- 2011. Springer, Springer Science + Business Media B.V.
  4. Arunakumara, K.K.I.U., B.C. Walpola, and M.H. Yoon. 2013. Banana peel: A green solution for metal removal from contaminated waters. Korean J. Environ. Agric. 32:108-116. https://doi.org/10.5338/KJEA.2013.32.2.108
  5. Arunakumara, K.K.I.U., B.C. Walpola, and M.H. Yoon. 2013. Agricultural methods for toxicity alleviation in metal contaminated soils. Korean J. Soil Sci. Fert. 46:73-80. https://doi.org/10.7745/KJSSF.2013.46.2.073
  6. Baum, C., K. Hrynkiewicz, P. Leinweber, and R. Meissner. 2006. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix dasyclados). J. Plant Nutr. Soil Sci. 169:516-522. https://doi.org/10.1002/jpln.200521925
  7. Belimov, A.A., N. Hontzeas, V.I. Safronova, S.V. Demchinskaya, G. Piluzza, S. Bullitta, and B.R. Glick. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37:241-250. https://doi.org/10.1016/j.soilbio.2004.07.033
  8. Belimov, A.A., A.M. Kunakova, V.I. Safronova, V.V. Stepanok, L.Y. Yudkin, Y.V. Alekseev, and A.P. Kozhemyakov. 2004. Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology. 73:99-106. https://doi.org/10.1023/B:MICI.0000016377.62060.d3
  9. Belimov, A.A., V.I. Safronova, T.A. Sergeyeva, T.N. Egorova, V.A. Matveyeva, V.E. Tsyganov, A.Y. Borisov, and I.A. Tikhonovich. 2001. Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47:642-652. https://doi.org/10.1139/w01-062
  10. Boonyapookana, B., P. Parkpian, S. Techapinyawat, R.D. DeLaun, and A. Jugsujinda. 2005. Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J. Environ. Sci. Health, Part A. 40:117-137. https://doi.org/10.1081/ESE-200033621
  11. Borgmann, U. 2000. Methods for assessing the toxicological significance of metals in aquatic ecosystems: bio-accumulationtoxicity relationships, water concentrations and sediment spiking approaches. Aquat. Ecosyst. Health. 3:277-289.
  12. Braud, A., K. Jezequel, E. Vieille, A. Tritter, and T. Lebeau. 2006. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Poll. 6:261-279. https://doi.org/10.1007/s11267-005-9022-1
  13. Cervantes, C., J. Chavez, N.A. Cardova, P. de la Mora, and J.A. Velasco. 1986. Resistance to metal by Pseudomonas aeruginosa clinical isolates. Microbios. 48:159-163.
  14. Chen, B., H. Shen, X. Li, G. Feng, and P. Christie. 2004. Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil. 261:219-229. https://doi.org/10.1023/B:PLSO.0000035538.09222.ff
  15. Chen, Y.E., S. Yuan, Y.Q. Su, and L. Wang. 2010. Comparison of heavy metal accumulation capacity of some indigenous mosses in Southwest China cities: a case study in Chengdu city. Plant Soil Environ. 56:60-66.
  16. Chen, Y.X., Y.P. Wang, Q. Lin, and Y.M. Luo. 2005. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ. Int. 31:861-866. https://doi.org/10.1016/j.envint.2005.05.044
  17. Citterio, S., N. Prato, P. Fumagalli, R. Aina, N. Massa, A. Santagostino, S. Sgorbati, and G. Berta. 2005. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere. 59:21-29. https://doi.org/10.1016/j.chemosphere.2004.10.009
  18. Di Gregorio, S., M. Barbafieri, S. Lampis, A.M. Sanangelantoni, E. Tassi, and G. Vallini. 2006. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere. 63:293-299. https://doi.org/10.1016/j.chemosphere.2005.07.020
  19. Egamberdiyeva, D., D. Juraeva, L. Gafurova, and G. Hoflich. 2002. Promotion of plant growth of maize by plant growth promoting bacteria in different temperature and soils. In van Santen, E. (ed.), Making Conservation Tillage Conventional: Building a Future on 25 Years of Research. Proceedings of 25th Annual Southern Conservation Tillage Conference for Sustainable Agriculture. Auburn, AL 24-26 June 2002. Special Report No. 1. Alabama Agricultural Experiment Station and Auburn University, AL 36849, USA.
  20. El-Tayeb, M.A., A.E. El-Enany, and N.L. Ahmed. 2006. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul. 50:191-199. https://doi.org/10.1007/s10725-006-9118-2
  21. Fazal, H. and A. Bano. 2010. The effect of diazotrophs (rhizobium and azatobactor) on growth and biomass of maize in lead (Pb) polluted soil, and accumulation of the lead in different parts of plant. Pak. J. Bot. 42:4363-4370.
  22. Freitas, H., M.N.V. Prasad, and J. Pratas. 2004. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment. Chemosphere. 54:1625-1642. https://doi.org/10.1016/j.chemosphere.2003.09.045
  23. Gadd, G.M. 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma. 122:109-119. https://doi.org/10.1016/j.geoderma.2004.01.002
  24. Hemambika, B., V. Balasubramanian, V.R. Kannan, and R.A. James. 2013. Screening of chromium-resistant bacteria for plant growth-promoting activities. Soil Sediment Contam. 22:717-736. https://doi.org/10.1080/15320383.2013.768199
  25. Jiang, C.Y., X.F. Sheng, M. Qian, and Q.Y. Wang. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72:157-164. https://doi.org/10.1016/j.chemosphere.2008.02.006
  26. Jing, Y.D., Z.L. He, and X.E. Yang. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ. SC B. 8:192-207.
  27. Karavoltsos, S., A. Sakellari, M. Dimopoulos, M. Dassenakis, and M. Scoullos. 2002. Cadmium content in foodstuffs from the Greek market. Food Addit. Contam. 19:954-962. https://doi.org/10.1080/02652030210136973
  28. Kayser, G., T. Korckritz, and B. Markert. 2001. Bioleaching for the decontamination of heavy metals. Wasser. Boden. 53:54-58.
  29. Kloepper, J.W. 2003. A review of mechanisms for plant growth promotion by PGPR, pp. 81-92. In Sixth International PGPR Workshop, Calicut, India.
  30. Kumar, S., K. Tamura, I.B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 17:1244-1245. https://doi.org/10.1093/bioinformatics/17.12.1244
  31. Lebeau, T., A. Braud, and K. Jezequel. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review, Environ. Pollut. 153:497-522. https://doi.org/10.1016/j.envpol.2007.09.015
  32. Luo, L., Y. Ma, S. Zhang, D. Wei, and Y.G. Zhu. 2009. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manage. 90:2524-2530. https://doi.org/10.1016/j.jenvman.2009.01.011
  33. Marchiol, L., G. Fellet, D. Perosa, and G. Zerbi. 2007. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol. Biochem. 45:379-387. https://doi.org/10.1016/j.plaphy.2007.03.018
  34. Nautiyal CS. 1999. An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  35. Ng, I. S., Chen, T., and Lin, R. 2014. Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01. Appl. Microbiol. Biotechnol. 98:2297-2308. https://doi.org/10.1007/s00253-013-5151-z
  36. Ouzounidou, G. and I. Ilias. 2005. Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. Bio. Plantarum.49:223-228. https://doi.org/10.1007/s10535-005-3228-y
  37. Pal, A., S. Dutta, P.K. Mukherjee, and A.K. Paul. 2005. Occurrence of heavy metal resistance in microflora from serpentine soil of Andaman. J. Basic Microbiol. 45:207-218. https://doi.org/10.1002/jobm.200410499
  38. Prapagdee, B., N. Chumphonwong, and N. Khonsue. 2012. Influence of cadmium resistant bacteria on promoting plant root elongation and increasing cadmium mobilization in contaminated soil. Fresenius Environmental Bulletin. 21:1186-1191.
  39. Prapagdee, B., M. Chanprasert, and S. Mongkolsuk. 2013. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere. 92:659-666. https://doi.org/10.1016/j.chemosphere.2013.01.082
  40. Rajkumar, M., M. Ying, and H. Freitas. 2008. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J. basic microbial. 48:500-508. https://doi.org/10.1002/jobm.200800073
  41. Ryan, P.R., Y. Dessaux, L.S. Thomashow, and D.M. Weller. 2009. Rhizosphere engineering and management for sustainable agriculture. Plant Soil. 321:363-383. https://doi.org/10.1007/s11104-009-0001-6
  42. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  43. Sheng X.F., and J.J. Xia. 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmiumresistant bacteria. Chemosphere. 64:1036 - 1042 https://doi.org/10.1016/j.chemosphere.2006.01.051
  44. Singh, S., and P.K. Aggarwal. 2006. Effect of heavy metals on biomass and yield of different crop species. Indian J. Agric. Sci. 76:688-691.
  45. Thomas, E.Y., J.A.I., Omueti, and O. Ogundayomi. 2012. The effect of phosphate fertilizer on heavy metal in soils and Amaranthus Caudatu. Agric. Biol. J. N. Am. 3:145-149. https://doi.org/10.5251/abjna.2012.3.4.145.149
  46. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997.The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876-4882.
  47. Turgut C., M. Katie Pepe, and T.J. Cutright. 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut. 131:147-154. https://doi.org/10.1016/j.envpol.2004.01.017
  48. Ryan, P.R., Y. Dessaux, L.S. Thomashow, and D.M. Weller. 2009. Rhizosphere engineering and management for sustainable agriculture. Plant Soil. 321: 363-383. https://doi.org/10.1007/s11104-009-0001-6
  49. Wani, P.A., M.S. Khan, and Z. Almas. 2007. Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J. Plant Nutr. Soil Sci. 170:283-287. https://doi.org/10.1002/jpln.200620602
  50. Wang, Y.P., J. Y. Shi, and Q. Lin. 2007. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J. Environ. Sciences. 19:848-853. https://doi.org/10.1016/S1001-0742(07)60141-7
  51. Whiting S. N., M. P. de Souza, and N. Terry. 2001. Rhizosphere Bacteria Mobilize Zn for Hyperaccumulation by Thlaspicaerulescens. Environ. Science & Technol. 35:3144-3150. https://doi.org/10.1021/es001938v
  52. Wu S.C., K.C. Cheung, and Y.M. Luo. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut.140:124-135. https://doi.org/10.1016/j.envpol.2005.06.023
  53. Yeh, T.Y., and C.T. Pan. 2012. Effect of chelating agents on copper, zinc, and lead uptake by sunflower, Chinese cabbage, cattail, and reed for different organic contents of soils. J. Environ. Anal. Toxicol. 2: doi:10.4172/2161-0525.1000145.
  54. Zaidi S., S. Usmani, and B.R. Singh. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere.64:991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057