DOI QR코드

DOI QR Code

Recent technological updates and clinical applications of induced pluripotent stem cells

  • Diecke, Sebastian (Division of Cardiology, Department of Medicine, Stanford University School of Medicine) ;
  • Jung, Seung Min (Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Lee, Jaecheol (Division of Cardiology, Department of Medicine, Stanford University School of Medicine) ;
  • Ju, Ji Hyeon (Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2014.07.21
  • Accepted : 2014.07.22
  • Published : 2014.09.01

Abstract

Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.

Keywords

References

  1. Somorjai IM, Lohmann JU, Holstein TW, Zhao Z. Stem cells: a view from the roots. Biotechnol J 2012;7:704-722. https://doi.org/10.1002/biot.201100349
  2. Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells: opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 2011;10:915-929.
  3. Schugar RC, Robbins PD, Deasy BM. Small molecules in stem cell self-renewal and differentiation. Gene Ther 2008;15:126-135. https://doi.org/10.1038/sj.gt.3303062
  4. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008;132:661-680. https://doi.org/10.1016/j.cell.2008.02.008
  5. Zaehres H, Scholer HR. Induction of pluripotency: from mouse to human. Cell 2007;131:834-835. https://doi.org/10.1016/j.cell.2007.11.020
  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  7. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1:55-70. https://doi.org/10.1016/j.stem.2007.05.014
  8. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008;132:567-582. https://doi.org/10.1016/j.cell.2008.01.015
  9. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  10. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920. https://doi.org/10.1126/science.1151526
  11. Chang CW, Lai YS, Pawlik KM, et al. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 2009;27:1042-1049. https://doi.org/10.1002/stem.39
  12. Feng B, Ng JH, Heng JC, Ng HH. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009;4:301-312. https://doi.org/10.1016/j.stem.2009.03.005
  13. Heinrich EM, Dimmeler S. MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ Res 2012;110:1014-1022. https://doi.org/10.1161/CIRCRESAHA.111.243394
  14. Kretsovali A, Hadjimichael C, Charmpilas N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012;2012:184154.
  15. Bayart E, Cohen-Haguenauer O. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther 2013;13:73-92. https://doi.org/10.2174/1566523211313020002
  16. Gonzalez F, Boue S, Izpisua Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 2011;12:231-242. https://doi.org/10.1038/nrg2937
  17. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945-949. https://doi.org/10.1126/science.1162494
  18. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010;24:2239-2263. https://doi.org/10.1101/gad.1963910
  19. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009;4:381-384. https://doi.org/10.1016/j.stem.2009.04.005
  20. Jia F, Wilson KD, Sun N, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 2010;7:197-199. https://doi.org/10.1038/nmeth.1426
  21. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010;7:618-630. https://doi.org/10.1016/j.stem.2010.08.012
  22. Hayden EC. California ponders cell-banking venture. Nature 2011;472:403. https://doi.org/10.1038/472403a
  23. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:348-362. https://doi.org/10.2183/pjab.85.348
  24. Dowey SN, Huang X, Chou BK, Ye Z, Cheng L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 2012;7:2013-2021. https://doi.org/10.1038/nprot.2012.121
  25. Ban H, Nishishita N, Fusaki N, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 2011;108:14234-14239. https://doi.org/10.1073/pnas.1103509108
  26. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949-953. https://doi.org/10.1126/science.1164270
  27. Gonzalez F, Barragan Monasterio M, Tiscornia G, et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 2009;106:8918-8922. https://doi.org/10.1073/pnas.0901471106
  28. Diecke S, Lisowski L, Mordwinkin NM, Kooreman NG, Wu JC. Second generation codon optimized minicircle (Comic) for non-viral reprogramming of human adult fibroblasts. In: Radisic M, Black LD 3rd, eds. Cardiac Tissue Engineering: Methods and Protocols. Vol. 1181. New York: Humana Press, 2014.
  29. Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797-801. https://doi.org/10.1126/science.1172482
  30. Lu J, Zhang F, Xu S, Fire AZ, Kay MA. The extragenic spacer length between the 5' and 3' ends of the transgene expression cassette affects transgene silencing from plasmid-based vectors. Mol Ther 2012;20:2111-2119. https://doi.org/10.1038/mt.2012.65
  31. Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003;8:495-500. https://doi.org/10.1016/S1525-0016(03)00168-0
  32. Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 2011;6:78-88.
  33. Lu J, Zhang F, Kay MA. A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 2013;21:954-963. https://doi.org/10.1038/mt.2013.33
  34. Hung SC, Kang MS, Kieff E. Maintenance of Epstein- Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci U S A 2001;98:1865-1870. https://doi.org/10.1073/pnas.98.4.1865
  35. Okita K, Yamakawa T, Matsumura Y, et al. An efficient nonviral method to generate integration-free human- induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 2013;31:458-466. https://doi.org/10.1002/stem.1293
  36. Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 2013;8:568-582. https://doi.org/10.1038/nprot.2013.019
  37. Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RM. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 1995;270:15974-15978. https://doi.org/10.1074/jbc.270.27.15974
  38. Amit M, Winkler ME, Menke S, et al. No evidence for infection of human embryonic stem cells by feeder cell-derived murine leukemia viruses. Stem Cells 2005;23:761-771. https://doi.org/10.1634/stemcells.2004-0046
  39. Warren L, Ni Y, Wang J, Guo X. Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci Rep 2012;2:657. https://doi.org/10.1038/srep00657
  40. Yoshioka N, Gros E, Li HR, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 2013;13:246-254. https://doi.org/10.1016/j.stem.2013.06.001
  41. Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009;4:472-476. https://doi.org/10.1016/j.stem.2009.05.005
  42. Lee J, Sayed N, Hunter A, et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2012;151:547-558. https://doi.org/10.1016/j.cell.2012.09.034
  43. Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013;341:651-654. https://doi.org/10.1126/science.1239278
  44. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003;21:319-321. https://doi.org/10.1038/nbt788
  45. Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009;27:851-857. https://doi.org/10.1038/nbt.1562
  46. Ding Q, Lee YK, Schaefer EA, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013;12:238-251. https://doi.org/10.1016/j.stem.2012.11.011
  47. Horii T, Morita S, Kimura M, et al. Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system. PeerJ 2013;1:e230. https://doi.org/10.7717/peerj.230
  48. Cheng LT, Sun LT, Tada T. Genome editing in induced pluripotent stem cells. Genes Cells 2012;17:431-438. https://doi.org/10.1111/j.1365-2443.2012.01599.x
  49. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-334. https://doi.org/10.1038/nrg3686
  50. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012;481:295-305. https://doi.org/10.1038/nature10761
  51. Tiscornia G, Vivas EL, Izpisua Belmonte JC. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med 2011;17:1570-1576. https://doi.org/10.1038/nm.2504
  52. Urbach A, Schuldiner M, Benvenisty N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 2004;22:635-641. https://doi.org/10.1634/stemcells.22-4-635
  53. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134:877-886. https://doi.org/10.1016/j.cell.2008.07.041
  54. Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321:1218-1221. https://doi.org/10.1126/science.1158799
  55. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 2010;6:407-411. https://doi.org/10.1016/j.stem.2010.04.005
  56. Carvajal-Vergara X, Sevilla A, D'Souza SL, et al. Patient- specif ic induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 2010;465:808-812. https://doi.org/10.1038/nature09005
  57. Yazawa M, Hsueh B, Jia X, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011;471:230-234. https://doi.org/10.1038/nature09855
  58. Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011;471:225-229. https://doi.org/10.1038/nature09747
  59. Brennand KJ, Simone A, Jou J, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011;473:221-225. https://doi.org/10.1038/nature09915
  60. Jang J, Kang HC, Kim HS, et al. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann Neurol 2011;70:402-409. https://doi.org/10.1002/ana.22486
  61. Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 2007;334:197. https://doi.org/10.1136/bmj.39048.407928.BE
  62. Frey-Vasconcells J, Whittlesey KJ, Baum E, Feigal EG. Translation of stem cell research: points to consider in designing preclinical animal studies. Stem Cells Transl Med 2012;1:353-358. https://doi.org/10.5966/sctm.2012-0018
  63. Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury. Cell Transplant 2013;22:571-617. https://doi.org/10.3727/096368912X655208
  64. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3:711-715. https://doi.org/10.1038/nrd1470
  65. Irion S, Nostro MC, Kattman SJ, Keller GM. Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb Symp Quant Biol 2008;73:101-110. https://doi.org/10.1101/sqb.2008.73.065
  66. Zhu H, Lensch MW, Cahan P, Daley GQ. Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 2011;12:266-275. https://doi.org/10.1038/nrg2951
  67. Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2009;5:584-595. https://doi.org/10.1016/j.stem.2009.11.009
  68. Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin- induced aging. Cell Stem Cell 2013;13:691-705. https://doi.org/10.1016/j.stem.2013.11.006
  69. Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed f ibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A 2008;105:5856-5861. https://doi.org/10.1073/pnas.0801677105
  70. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-1923. https://doi.org/10.1126/science.1152092
  71. Lui KO, Waldmann H, Fairchild PJ. Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 2009;4:70-80. https://doi.org/10.2174/157488809787169093
  72. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013;499:481-484. https://doi.org/10.1038/nature12271
  73. Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports 2014;2:205-218. https://doi.org/10.1016/j.stemcr.2013.12.007
  74. Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev 2012;21:2364-2373. https://doi.org/10.1089/scd.2012.0088
  75. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 2012;11:147-152. https://doi.org/10.1016/j.stem.2012.07.014
  76. Lin G, Xie Y, Ouyang Q, et al. HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell 2009;5:461-465. https://doi.org/10.1016/j.stem.2009.10.009
  77. Taylor CJ, Bolton EM, Bradley JA. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 2011;366:2312-2322. https://doi.org/10.1098/rstb.2011.0030

Cited by

  1. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/382530
  2. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives vol.8, pp.None, 2014, https://doi.org/10.2147/sccaa.s88036
  3. Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting vol.180, pp.8, 2014, https://doi.org/10.1007/s12010-016-2187-4
  4. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes vol.16, pp.None, 2014, https://doi.org/10.1186/s12896-016-0306-5
  5. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells vol.32, pp.1, 2017, https://doi.org/10.3904/kjim.2016.198
  6. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation vol.32, pp.4, 2017, https://doi.org/10.3904/kjim.2016.302
  7. Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid vol.25, pp.3, 2017, https://doi.org/10.1017/s0967199417000211
  8. Generation of Induced Pluripotent Stem Cells from Human Epidermal Keratinocytes vol.20, pp.6, 2018, https://doi.org/10.1089/cell.2018.0035
  9. Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/9432616
  10. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-DirectedIn VivoGene Delivery of Transposons in Mice vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5129526
  11. Induced pluripotent stem cell‐derived extracellular vesicles: A novel approach for cell‐free regenerative medicine vol.234, pp.6, 2014, https://doi.org/10.1002/jcp.27775
  12. Metabolomic profiles of induced pluripotent stem cells derived from patients with rheumatoid arthritis and osteoarthritis vol.10, pp.1, 2014, https://doi.org/10.1186/s13287-019-1408-5
  13. Umbilical Cord-Mesenchymal Stem Cell-Conditioned Medium Improves Insulin Resistance in C2C12 Cell vol.44, pp.None, 2014, https://doi.org/10.4093/dmj.2019.0191