DOI QR코드

DOI QR Code

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
  • 투고 : 2014.07.03
  • 심사 : 2014.07.14
  • 발행 : 2014.10.25

초록

Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

키워드

참고문헌

  1. K. W. Kim, Y. W. Song, S. P. Chang, I. H. Kim, S. S. Kim, and S. Y. Lee, Thin Solid Films, 518, 1190 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.03.229].
  2. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett., 83, 3401 (2003). [DOI: http://dx.doi.org/10.1063/1.1621729].
  3. M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, Appl. Phys. Lett., 93, 263103 (2008). [DOI: http://dx.doi.org/10.1063/1.3046726].
  4. A. Laskin and J. P. Cowin, Anal. Chem., 73, 1023 (2001). [DOI: http://dx.doi.org/10.1021/ac0009604].
  5. Y. W. Song, K. W. Kim, J. P. Ahn, G. E. Jang, and S. Y. Lee, Nanotechnology, 20, 275606 (2009). [DOI: http://dx.doi.org/10.1088/0957-4484/20/27/275606].
  6. G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, and S. T. Lee, Nano Lett., 8, 2591 (2008). [DOI: http://dx.doi.org/10.1021/nl073022t].
  7. C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett., 84, 1540 (2006). [DOI: http://dx.doi.org/10.1063/1.1651328].
  8. H. C. Hsu, Y. K. Tseng, H. M. Cheng, J. H. Kuo, and W. F. Hsieh, J. Crystal Growth, 261, 520 (2004). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2003.09.040].
  9. Y. W. Song and S. Y .Lee, Thin Solid Films, 518, 1323 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.01.191].
  10. K. J. Kim and Y. R. Park, Appl. Phys. Lett., 78, 3761 (2001).
  11. L. K. Rao and V. Vinni, Appl. Phys. Lett., 63, 608 (1993). [DOI: http://dx.doi.org/10.1063/1.109665].
  12. M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, J. Cryst. Growth, 220, 254 (2000). [DOI: http://dx.doi.org/10.1016/S0022-0248(00)00834-4].
  13. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr, Appl. Phys. Lett., 82, 1117 (2003). [DOI: http://dx.doi.org/10.1063/1.1553997].
  14. R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, and E. Fortunato, J. Appl. Phys., 101, 044505 (2007). [DOI: http://dx.doi.org/10.1063/1.2495754].