Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.5.453

A High Birefringent Polymer Terahertz Waveguide: Suspended Elliptical Core Fiber  

Wang, Jingli (College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications)
Chen, Heming (College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications)
Shi, Weihua (College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications)
Publication Information
Journal of the Optical Society of Korea / v.18, no.5, 2014 , pp. 453-458 More about this Journal
Abstract
A novel high birefringent polymer terahertz (THz) fiber with a suspended elliptical core is proposed in this paper. The introduction of an elliptical core can enhance asymmetry to realize high mode birefringence, and a large porous outer cladding effectively isolates the core-guided mode from interacting with the surrounding environment. A full-vector finite element method(FEM) is used to analyze the characteristics of the THz fiber. Simulation results show that the suspended elliptical fiber exhibits high mode birefringence on a level of $10^{-2}$ over a wide frequency range, and an extremely large mode birefringence(${\approx}0.06226$) is obtained when ellipticity is 0.2. Moreover, a suspended hollow elliptical core fiber is also discussed for the purpose of lower loss, however high mode birefringence and low relative absorption loss can not coexist in such a kind of fiber.
Keywords
Birefringence; Suspended elliptical core; Terahertz waveguide; Polymer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Federico, B. Alexander, and V. Borja, "Birefringence measurement in the terahertz range based on double Fourier analysis," Opt. Lett. 39, 809-812 (2014).   DOI   ScienceOn
2 J. M. Dai and X. C. Zhang, "Terahertz wave generation from thin metal films excited by asymmetrical optical fields," Opt. Lett. 39, 777-780 (2014).   DOI   ScienceOn
3 S. Atakaramians, A. V. Shahraam, and M. F. Bernd, "Porous fibers: A novel approach to low loss THz wave-guides," Opt. Express 16, 8845-8854 (2008).   DOI
4 A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101-1-071101-3 (2008).   DOI   ScienceOn
5 A. Dupuis, A. Hassani, and M. Skorobogatiy, "Design of porous polymer THz fibers," Proc. SPIE 6892, 51-63 (2008).
6 L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006).   DOI   ScienceOn
7 S. A. Vahid, S. Atakaramians, B. M. Fischer, H. E. Heidepriem, T. M. Monro, and D. Abbott, "Low loss, low dispersion T-ray transmission in microwires," in Proc. of Quanturm Electronics and Laser Science Conference (Baltimore, USA, 2007), paper JWA105.
8 M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, "Suspended core subwavelength fibers: Towards practical designs for low-loss terahertz guidance," Opt. Express 19, 9127-9138 (2011).   DOI
9 X. G. Jiang, D. R. Chen, and G. F. Hu, "Suspended hollow core fiber for terahertz wave guiding," Appl. Opt. 52, 770-774 (2013).   DOI
10 Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymer," J. Korean Phys. Soc. 49, 513-517 (2006).
11 K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).   DOI   ScienceOn
12 A. W. Snyder and J. D. Love, Optical Waveguide Theory (London: Kluwer Academic Publisher, 2000).
13 A. Shaghik, A. V. Shahraam, E. H. Heike, N. Michael, M. F. Bernd, A. Derek, and M. M. Tanya, "THz porous fibers: Design, fabrication, and experimental characterization," Opt. Express 17, 14053-14062 (2009).   DOI
14 J. L. Wang, J. Q. Yao, H. M. Chen, K. Zhong, and Z. Y. Li, "Ultrahigh birefringent polymer terahertz fiber based on a near-tie unit," J. Opt. 13, 055402 (5pp) (2011).   DOI   ScienceOn
15 N. N. Chen, J. Liang, and L. Y. Ren, "High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance," Appl. Opt. 52, 5297-5302 (2013).   DOI
16 Z. Y. Liu, C. Wu, M. L. V. Tse, and H. Y. Tam, "Fabrication, Characterization, and sensing applications of a high-birefringence suspended-core fiber," J. Lightwave Technol. 32, 2113-2122 (2104).
17 T. Kiwa, K. Sakai, and K. Tsukada, "Stabilization method for signal drifts in terahertz chemical microscopy," Opt. Express 22, 1330-1335 (2014).   DOI
18 A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Opt. Express 16, 6340-6351 (2008).   DOI
19 J. Choi, S. Y. Ryu, W. S. Kwon, K. S. Kim, and S. Kim, "Compound explosives detection and component analysis via terahertz time-domain spectroscopy," J. Opt. Soc. Korea 17, 454-460 (2013).   과학기술학회마을   DOI   ScienceOn