DOI QR코드

DOI QR Code

Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis

바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향

  • Kim, Jae-Kon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority (K-Petro)) ;
  • Park, Jo Yong (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority (K-Petro)) ;
  • Yim, Eui Soon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority (K-Petro)) ;
  • Ha, Jong Han (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority (K-Petro))
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 박조용 (한국석유관리원 석유기술연구소) ;
  • 임의순 (한국석유관리원 석유기술연구소) ;
  • 하종한 (한국석유관리원 석유기술연구소)
  • Received : 2014.08.18
  • Accepted : 2014.09.19
  • Published : 2014.09.30

Abstract

The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced by rapidly heating biomass to intermediate temperature ($450{\sim}600^{\circ}C$) in the absence of any external oxygen followed by rapid quenching of the resulting vapor. Bio-oil can be produced in weight yield maximum 75 wt% of the original dry biomass and bio-oils typically contain 60-75% of the initial energy of the biomass. In this study, it is described focusing on the characterization of feedstock, production principle of bio-oil, bio-oil's property and it's application sector.

본 논문에서는 바이오매스로부터 급속열분해를 통해 난방용, 발전용 및 수송용 연료로 사용하기 위해 바이오오일을 생산하는 기술개발 현황을 나타내었다. 바이오매스를 작은 규모의 액체연료로 전환하기 위해 가장 효율적인 방법 중 하나는 급속열분해이다. 급속열분해를 통한 바이오오일은 $450^{\circ}C{\sim}600^{\circ}C$ 온도에서 바이오매스가 신속히 열분해 되어 증기 급냉를 위해 외부 산소가 없는 조건에서 생산된다. 이 바이오오일은 최초 건조 바이오매스 기준 최대 75 무게%까지 생산할 수 있지만, 일반적으로 60-75 무게% 수준이 적합하다. 본 연구에서는 바이오매스의 원료특성, 바이오오일 생산원리, 바이오오일의 특성 및 활용분야에 대한 최근의 개발현황을 살펴보았다.

Keywords

References

  1. IEA, 2009, "World Energy Outlook", International Energy Agency, OECD/Paris.
  2. J.-K. Kim, C. H. Jeon, E. S. Yim, C. S. Jung, S. B. Lee, Y. J. Lee and M. J. Kang, A study on fuel quality characteristics of F-T diesel for production of BTL diesel, J. of the Korean Oil Chemists' Soc., 29, 450 (2012).
  3. S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Review of biodiesel composition, properties, and specifications, Renew. Sustain. Energy Rev., 16, 143 (2012). https://doi.org/10.1016/j.rser.2011.07.143
  4. J.-K. Kim, C. H. Jeon, E. S. Yim and C. S. Jung, A study on the fuel characteristics of hydrotreated biodiesel (HBD) for alternative diesel fuel, J. of the Korean Oil Chemists' Soc., 28, 508 (2011).
  5. Hart's Global Biofuel Center, 2010, "Global Biofuels Outlook 2010-2020", Houston, USA.
  6. J.-K. Kim, E. S. Yim, C-. S. Jung, Study on comparison of global biofuels mandates policy in transport sector, New & Renewable Energy, 7, 18 (2011).
  7. J.-K. Kim, E. S. Yim, C. H. Jeon, C. S. Jung and B. H. Han, Cold performance of various biodiesel fuel blends at low temperature, International Journal of Automotive Technology, 13, 293 (2012). https://doi.org/10.1007/s12239-012-0027-2
  8. New & Renewable Energy Center. 2013, "New & Renewable Energy Supply data", Korea.
  9. A. V. Bridgwater. Biomass fast pyrolysis, Thermal Sciences, 8, 21 (2004). https://doi.org/10.2298/TSCI0402021B
  10. S. Czernik and A. V. Bridgwater, Overview of applications of biomass fast pyrolysis oil, Energy & Fuels, 18, 590 (2004). https://doi.org/10.1021/ef034067u
  11. N. Ozbay, E. Apaydin-Varol, B. B. Uzun and A. E. Putun, Characterization of bio-oil obtained from fruit pulp pyrolysis, Energy, 33, 1233 (2008). https://doi.org/10.1016/j.energy.2008.04.006
  12. M. R. Islam, M. S. H. K. Tushar and H. Haniu, Production of liquids fuels and chemicals from pyrolysis of Bangladeshi bicycle/rickshaw tire wastes, Journal of Analytical and Applied Pyrolysis, 82, 96 (2008). https://doi.org/10.1016/j.jaap.2008.02.005
  13. W. N. R. W. Isanhak, M. W. M. Hisham, M. A. Yarmo and T. Y. Yun Hin, A review on bio-oil production from biomass by using pyrolysis method, Renewable and Sutainable Energy Review, 16, 5910 (2012). https://doi.org/10.1016/j.rser.2012.05.039
  14. M. Ikura, M. Stanciulescu and E. Hogan, Emulsification of pyrolysis derived bio-oil in diesel fuel, Biomass Bioenergy, 24, 221 (2003). https://doi.org/10.1016/S0961-9534(02)00131-9
  15. D. Chiaramonti, M. Bonini, E. Fratini, G. Tondi and K. Gartner, Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 1: Emulsion production, Biomass Bioenergy, 25, 85 (2003). https://doi.org/10.1016/S0961-9534(02)00183-6
  16. J. F. Hernandez, S. N. Guash and J. C. Morla, Effect of pyrolysis production on diesel-fuel oil blends, Technological Quimica, 3, 18 (2006).
  17. U.S Department of Energy, 2011, Biomass Program Overview.
  18. C. Helena, 2011, Bioenergy. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambrige, United Kingdom and New York, NY, USA.
  19. N. Abdullah and H. Gerhauser, Bio-oil derived from empty fruit bunches, Fuel, 87, 2606 (2008). https://doi.org/10.1016/j.fuel.2008.02.011
  20. D. S. Scott, J. Piskorz and D. Radlein, Liquid products from the fast pyrolysis of wood and cellulose, Industrial & Engineering Chemistry, 24, 581 (1985).
  21. D. S. Scott and J. Piskorz, The flash pyrolysis of aspen-poplar wood, Canadian Journal of Chemical Engineering, 60, 666 (1982). https://doi.org/10.1002/cjce.5450600514
  22. H. Thunman and F. Johnsson, Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds, Energy & Fuels, 15, 1488 (2001). https://doi.org/10.1021/ef010097q
  23. W. T. Tsai and Y. M. Chang, Fast pyrolysis of rice husks: product yields and compositions, Bioresource Technology, 98, 22 (2007). https://doi.org/10.1016/j.biortech.2005.12.005
  24. O. Onay and O. M. Kockar, Fast pyrolysis of rape seed in a well-swept fixed bed reactor, Journal of Analytical and Applied Pyrolysis, 59, 995 (2001).
  25. O. Onay, S. H. Beis, O. M. Kockar, Pyrolysis of walnut shell in a well-swept fixed bed reactor, Energy Sources, 26, 771 (2004). https://doi.org/10.1080/00908310490451402
  26. S. H. Beis, O. Onay and O. M. Kockar, Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yield and compositions, Renew Energy, 26, 21 (2002). https://doi.org/10.1016/S0960-1481(01)00109-4
  27. B. B. Uzun, A. E. Putun and E. Putun, Fast pyrolysis of soybean cake: product yields and compositions, Bioresource Technology, 97, 569 (2006). https://doi.org/10.1016/j.biortech.2005.03.026
  28. F. A. Agblevor and A. E. Wiselogel, Fast pyrolysis of stored biomass feedstocks, Energy & Fuels, 9, 635 (1995). https://doi.org/10.1021/ef00052a010
  29. K. Raveendran and K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel, 75, 987 (1996). https://doi.org/10.1016/0016-2361(96)00030-0
  30. S. Senoz, Pyrolysis of pine(PinusBrutiaTen.) Chips:1. Effect of pyrolysis temperature and heating rate on the product yields, Energy Sources, 24, 347 (2002). https://doi.org/10.1080/00908310252888727
  31. S. Balci and H. Yucel, Pyrolysis kinetics of lignocellulosic materials, Industrial & Engineering Chemistry Research, 32, 2573 (1993). https://doi.org/10.1021/ie00023a021
  32. P. A. Della Roca, E. G. Cerrella, P. R. Bonelli and A. L. Cukierman, Pyrolysis of hard-woods residues: on kinetics and chars characterization, Biomass and Bioenergy, 16, 79 (1999). https://doi.org/10.1016/S0961-9534(98)00067-1
  33. I. Demiral and E. A. Ayan, Effect of pyrolysis conditions on the product yields and characterization of the liquid product, Bioresource Technology, 102, 3946 (2011). https://doi.org/10.1016/j.biortech.2010.11.077
  34. J. V. Ortega and M. W. Liberatore, Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks, Journal of Analytical and Applied Pyrolysis, 91, 190 (2011). https://doi.org/10.1016/j.jaap.2011.02.007
  35. J. Cao, X. Xiao, S. Zhang, X. Zhao, K. Sato and Y. Ogawa, Preparation and characterization of bio-oils from internally circulating fluidized-bed pyr-olyses of municipal, livestock, and wood waste, Bioresource Technology, 102, 2009 (2011). https://doi.org/10.1016/j.biortech.2010.09.057
  36. M. Amutio, G. Lopez, M. Artetxe, G. Elordi, M. Olazar and J. Bilbao, Influence of temperature on biomass pyrolysis in a conical spouted bed reactor, Resources, Conservation and Recycling, 59, 23 (2012). https://doi.org/10.1016/j.resconrec.2011.04.002
  37. S. Thangalazhy-Gopakumar, H. Ravidran, R. B. Gupta, O. Fasina and M. Tu, Physical properties of bio-oil produced at various temperature from pine wood using an auger reactor, Bioresource Technology, 101, 8389 (2011).
  38. H. S. Heo, Y. K. Park, C. Ryu, D. J. Suh and Y. W. Suh, Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed, Bioresource Technology, 101, 91 (2010). https://doi.org/10.1016/j.biortech.2009.06.003
  39. H. S. Heo, H. J. Park, S. H. Park, S. Kim, D. J. Suh and Y. W. Suh, Fast pyrolysis of rice husks under different reaction conditions, Industrial & Engineering Chemistry, 16, 27 (2010). https://doi.org/10.1016/j.jiec.2010.01.026
  40. M. R.Islam, M. Parveen and H. Haniu, Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis, Bioresource Technology, 101, 4162 (2010). https://doi.org/10.1016/j.biortech.2009.12.137
  41. C. A. Mullen, A. A. Boateng, N. M. Goldberg, I. M. Lima, D. A. Laird and K. B. Hicks, Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis, Biomass and Bioenergy, 34, 67 (2010). https://doi.org/10.1016/j.biombioe.2009.09.012
  42. H. Zhang, R. Xiao, H. Huang and G. Xiao, Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor, Bioresource Technology, 100, 1428 (2009). https://doi.org/10.1016/j.biortech.2008.08.031
  43. M. Asadullah, M. A. Rahman, M. M. Ali, M. A. Motin, M. B. Sultan and M. R. Alam, Jute stick pyrolysis for bio-oil production in fluidized bed reactor, Bioresource Technology, 99, 44 (2008). https://doi.org/10.1016/j.biortech.2006.12.002
  44. J. Lede, F. Broust, F-T. Ndiaye and M. Ferrer, Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor, Fuel, 86, 1800 (2007). https://doi.org/10.1016/j.fuel.2006.12.024
  45. D. K. Shen and S. Gu, The mechanism for thermal decomposition of cellulose and its main products, Bioresource Technology, 100, 6496 (2009). https://doi.org/10.1016/j.biortech.2009.06.095
  46. A. V. Bridgwater and G. V. C. Peacocke, Fast pyrolysis processes for biomass, Renewable & Sustainable Energy Reviews, 4, 1 (2000). https://doi.org/10.1016/S1364-0321(99)00007-6
  47. J. Lehot, A. Oasmaa, Y. Solantausta, M. Kyto and D. Chiaramonti, 2013, "Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-oils", VTT Technology 87, Espoo.
  48. M. Ringer, V. Putsche and J. Scahill, 2006, "Large-scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis", NREL Technical Report NREL/TP-510-37779.
  49. J. Piskorz, D. Radlein and D. S. Scott, On the mechanism of the rapid pyrolysis of cellulose, Journal of Analytical and Applied Pyrolysis, 9, 121 (1986). https://doi.org/10.1016/0165-2370(86)85003-3
  50. E. J. Soltes and T. J. Elder, "Pyrolysis", I.S, 1981, 63, Goldstein ed. Organic Chemicals from Biomass, Boca Raton, FL: CRC Press.
  51. P. K. Kanaujia, Y. K. Sharma, M. O. Garg, D. Tripathi and R. Singh, Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass, Journal of Analytical and Applied Pyrolysis, 105, 55 (2014). https://doi.org/10.1016/j.jaap.2013.10.004
  52. S. B. Jones, J. E. Holladay, C. Valkenburg, D. J. Stevens, C. W. Walton, C. Kinchin, D. C. Elliot and S. Czernik, 2009, "Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A design case", PNNL report-18284.
  53. J. L. Zheng and Q. Wei, Improving the quality of fast pyrolysis bio-oil by reduced pressure distillation, Biomass and Bioenergy, 35, 1804 (2011). https://doi.org/10.1016/j.biombioe.2011.01.006
  54. N. Lohitharn and B. H. Shanks, Upgrading of bio-oil: effect of light aldehydes on acetic acidremoval via esterification, Catalysis Communications, 11, 96 (2009). https://doi.org/10.1016/j.catcom.2009.09.002
  55. M. Ikura, M. Stanciulescu and E. Hogan, Emulsification of pyrolysis derived bio-oil in diesel fuel, Biomass and Bioenergy, 24, 221 (2003). https://doi.org/10.1016/S0961-9534(02)00131-9

Cited by

  1. 에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선 vol.35, pp.4, 2014, https://doi.org/10.12925/jkocs.2018.35.4.975