DOI QR코드

DOI QR Code

중성자 조사된 SiC Schottky Diode의 온도 의존 특성

Temperature Dependence of Neutron Irradiated SiC Schottky Diode

  • 김성수 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Kim, Sung-Su (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 투고 : 2014.07.30
  • 심사 : 2014.09.12
  • 발행 : 2014.10.01

초록

The temperature dependent characteristics on the properties of SiC Schottky Diode has been investigated. In this study, the temperature dependent current-voltage characteristics of the SiC Schottky diode were measured in the range of 300 ~ 500 K. Divided into pre- and post- irradiated device was measured. The barrier height after irradiation device at 500 K increased 0.15 eV compared to 300 K, the barrier height of pre- neutron irradiated Schottky diode increased 0.07 eV. The effective barrier height after irradiation increased from 0.89 eV to 1.05 eV. And ideality factor of neutron irradiated Schottky diode at 500 K decreased 0.428 compared to 300 K, the ideality factor of pre- neutron irradiated Schottky diode decreased 0.354. Also, a slight positive shift in threshold voltage from 0.53 to 0.68 V. we analyzed the effective barrier height and ideality factor of SiC Schottky diode as function of temperature.

키워드

참고문헌

  1. A. Larry, Nucl. Inst Meth A, 428, 95 (1999). https://doi.org/10.1016/S0168-9002(98)01585-X
  2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burn, J. Appl. Phys., 76, 1363 (1994). https://doi.org/10.1063/1.358463
  3. A. Saha and J. A. Cooper, IEEE Trans. Electron Devices, 52, 2786 (2007).
  4. W. Cunningham, A. Gouldwell, G. Lambm, J. Scott, K. Mathieson, P. Roya, R. Bates, P. Thornton, K. M. Smith, R. Cusco, M. Glaser, and M. Rahman, Nucl. Instr. and Meth. A, 487, 33 (2002). https://doi.org/10.1016/S0168-9002(02)00941-5
  5. K. Cinar, C. Coskun, E. Gur, and S. Aydogan, Nucl. Inst. Meth. in Physics Research B, 267, 87 (2009). https://doi.org/10.1016/j.nimb.2008.10.087
  6. T. R. Oldham and F. B. McLean, IEEE Trans. on Nuclear Sci., 50, 483 (2003). https://doi.org/10.1109/TNS.2003.812927
  7. P. Roche, IEEE International Reliability Physics Symposium (San Jose, USA, 2006).
  8. P. Jayavel, K. Santhakumar, and J. Kumar, Physica B, 315, 88 (2002). https://doi.org/10.1016/S0921-4526(01)01104-8
  9. J. H. Kim, S. Nigam, F. Ren, D. Schoenfeld, G. Y. Chung, and S. J. Pearton, Electrochem. Solid State Lett., 6, G105 (2003). https://doi.org/10.1149/1.1584211
  10. K. Cinar, C. Coskun, E. Gur, and S. Aydogan, Nucl. Inst. and Meth. in Phys. Research B, 267, 87 (2009). https://doi.org/10.1016/j.nimb.2008.10.087