DOI QR코드

DOI QR Code

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Received : 2014.05.27
  • Accepted : 2014.07.31
  • Published : 2014.09.30

Abstract

Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Keywords

References

  1. Abuarqoub, H., Foresti, R., Green, C. J. and Motterlini, R. (2006) Heme oxygenase-1 mediates the anti-inflammatory actions of 2'-hydroxychalcone in RAW 264.7 murine macrophages. Am. J. Physiol. Cell Physiol. 290, C1092-1099. https://doi.org/10.1152/ajpcell.00380.2005
  2. Alcaraz, M. J., Vicente, A. M., Araico, A., Dominguez, J. N., Terencio, M. C. and Ferrandiz, M. L. (2004) Role of nuclear factor-kappaB and heme oxygenase-1 in the mechanism of action of an anti-inflammatory chalcone derivative in RAW 264.7 cells. Br. J. Pharmacol. 142, 1191-1199. https://doi.org/10.1038/sj.bjp.0705821
  3. Ashino, T., Yamanaka, R., Yamamoto, M., Shimokawa, H., Sekikawa, K., Iwakura, Y., Shioda, S., Numazawa, S. and Yoshida, T. (2008) Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Mol. Immunol. 45, 2106-2115. https://doi.org/10.1016/j.molimm.2007.10.011
  4. Avila, H. P., Smania Ede, F., Monache, F. D. and Smania, A., Jr. (2008) Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 16, 9790-9794. https://doi.org/10.1016/j.bmc.2008.09.064
  5. Ban, H. S., Suzuki, K., Lim, S. S., Jung, S. H., Lee, S., Ji, J., Lee, H. S., Lee, Y. S., Shin, K. H. and Ohuchi, K. (2004) Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase and tumor necrosis factor-alpha by 2'-hydroxychalcone derivatives in RAW 264.7 cells. Biochem. Pharmacol. 67, 1549-1557. https://doi.org/10.1016/j.bcp.2003.12.016
  6. Batovska, D., Parushev, S., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M. and Najdenski, H. (2007) Study on the substituents' effects of a series of synthetic chalcones against the yeast Candida albicans. Eur. J. Med. Chem. 42, 87-92. https://doi.org/10.1016/j.ejmech.2006.08.012
  7. Berger, B., Rothmaier, A. K., Wedekind, F., Zentner, J., Feuerstein, T. J. and Jackisch, R. (2006) Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br. J. Pharmacol. 148, 795-806.
  8. Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J. and Diehl, J. A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198-7209. https://doi.org/10.1128/MCB.23.20.7198-7209.2003
  9. Dijkstra, G., Blokzijl, H., Bok, L., Homan, M., van Goor, H., Faber, K. N., Jansen, P. L. and Moshage, H. (2004) Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide. J. Pathol. 204, 296-303. https://doi.org/10.1002/path.1656
  10. Dinkova-Kostova, A. T., Massiah, M. A., Bozak, R. E., Hicks, R. J. and Talalay, P. (2001) Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci U.S.A. 98, 3404-3409. https://doi.org/10.1073/pnas.051632198
  11. Foresti, R., Hoque, M., Monti, D., Green, C. J. and Motterlini, R. (2005) Differential activation of heme oxygenase-1 by chalcones and rosolic acid in endothelial cells. J. Pharmacol. Exp. Ther. 312, 686-693.
  12. Gibaldi, M. (1993) What is nitric oxide and why are so many people studying it? J. Clin. Pharmacol. 33, 488-496. https://doi.org/10.1002/j.1552-4604.1993.tb04694.x
  13. Hsieh, C. H., Jeng, S. F., Hsieh, M. W., Chen, Y. C., Rau, C. S., Lu, T. H. and Chen, S. S. (2008) Statin-induced heme oxygenase-1 increases NF-kappaB activation and oxygen radical production in cultured neuronal cells exposed to lipopolysaccharide. Toxicol. Sci. 102, 150-159. https://doi.org/10.1093/toxsci/kfm298
  14. Karki, R., Thapa, P., Kang, M. J., Jeong, T. C., Nam, J. M., Kim, H. L., Na, Y., Cho, W. J., Kwon, Y. and Lee, E. S. (2010) Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structureactivity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorg. Med. Chem. 18, 3066-3077. https://doi.org/10.1016/j.bmc.2010.03.051
  15. Karki, R., Thapa, P., Yoo, H. Y., Kadayat, T. M., Park, P. H., Na, Y., Lee, E., Jeon, K. H., Cho, W. J., Choi, H., Kwon, Y. and Lee, E. S. (2012) Dihydroxylated 2,4,6-triphenyl pyridines: synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study. Eur. J. Med. Chem. 49, 219-228. https://doi.org/10.1016/j.ejmech.2012.01.015
  16. Kim, S. H., Lee, E., Baek, K. H., Kwon, H. B., Woo, H., Lee, E. S., Kwon, Y. and Na, Y. (2013) Chalcones, inhibitors for topoisomerase I and cathepsin B and L, as potential anti-cancer agents. Bioorg. Med. Chem. Lett. 23, 3320-3324. https://doi.org/10.1016/j.bmcl.2013.03.106
  17. Kontogiorgis, C., Mantzanidou, M. and Hadjipavlou-Litina, D. (2008) Chalcones and their potential role in inflammation. Mini Rev. Med. Chem. 8, 1224-1242. https://doi.org/10.2174/138955708786141034
  18. Kwak, M. K., Itoh, K., Yamamoto, M. and Kensler, T. W. (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol. Cell. Biol. 22, 2883-2892. https://doi.org/10.1128/MCB.22.9.2883-2892.2002
  19. Madan, B., Batra, S. and Ghosh, B. (2000) 2'-hydroxychalcone inhibits nuclear factor-kappaB and blocks tumor necrosis factor-alpha-and lipopolysaccharide-induced adhesion of neutrophils to human umbilical vein endothelial cells. Mol. Pharmacol. 58, 526-534. https://doi.org/10.1124/mol.58.3.526
  20. Maines, M. D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  21. Moncada, S. and Higgs, A. (1993) The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002-2012. https://doi.org/10.1056/NEJM199312303292706
  22. Motterlini, R., Foresti, R., Bassi, R. and Green, C. J. (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med. 28, 1303-1312. https://doi.org/10.1016/S0891-5849(00)00294-X
  23. Na, H. K. and Surh, Y. J. (2014) Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med. 67, 353-365. https://doi.org/10.1016/j.freeradbiomed.2013.10.819
  24. Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536-4541. https://doi.org/10.1074/jbc.M207293200
  25. Numazawa, S., Ishikawa, M., Yoshida, A., Tanaka, S. and Yoshida, T. (2003) Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am. J. Physiol. Cell Physiol. 285, C334-342. https://doi.org/10.1152/ajpcell.00043.2003
  26. Nussler, A. K. and Billiar, T. R. (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol. 54, 171-178. https://doi.org/10.1002/jlb.54.2.171
  27. Onyiah, J. C., Sheikh, S. Z., Maharshak, N., Steinbach, E. C., Russo, S. M., Kobayashi, T., Mackey, L. C., Hansen, J. J., Moeser, A. J., Rawls, J. F., Borst, L. B., Otterbein, L. E. and Plevy, S. E. (2013) Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology 144, 789-798. https://doi.org/10.1053/j.gastro.2012.12.025
  28. Otterbein, L. E., Soares, M. P., Yamashita, K. and Bach, F. H. (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449-455. https://doi.org/10.1016/S1471-4906(03)00181-9
  29. Park, P. H., Kim, H. S., Jin, X. Y., Jin, F., Hur, J., Ko, G. and Sohn, D. H. (2009) KB-34, a newly synthesized chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via heme oxygenase-1 induction and blockade of activator protein-1. Eur. J. Pharmacol. 606, 215-224. https://doi.org/10.1016/j.ejphar.2008.12.034
  30. Ruan, R. S. (2002) Possible roles of nitric oxide in the physiology and pathophysiology of the mammalian cochlea. Ann. N. Y. Acad. Sci. 962, 260-274. https://doi.org/10.1111/j.1749-6632.2002.tb04073.x
  31. Sasaki, T., Takahashi, T., Maeshima, K., Shimizu, H., Toda, Y., Morimatsu, H., Takeuchi, M., Yokoyama, M., Akagi, R. and Morita, K. (2006) Heme arginate pretreatment attenuates pulmonary NF-kappaB and AP-1 activation induced by hemorrhagic shock via heme oxygenase-1 induction. Med. Chem. 2, 271-274.
  32. Sawle, P., Foresti, R., Mann, B. E., Johnson, T. R., Green, C. J. and Motterlini, R. (2005) Carbon monoxide-releasing molecules (CORMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br. J. Pharmacol. 145, 800-810. https://doi.org/10.1038/sj.bjp.0706241
  33. True, A. L., Olive, M., Boehm, M., San, H., Westrick, R. J., Raghavacha ri, N., Xu, X., Lynn, E. G., Sack, M. N., Munson, P. J., Gladwin, M. T. and Nabel, E. G. (2007) Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ. Res. 101, 893-901. https://doi.org/10.1161/CIRCRESAHA.107.158998
  34. Wang, W. P., Guo, X., Koo, M. W., Wong, B. C., Lam, S. K., Ye, Y. N. and Cho, C. H. (2001) Protective role of heme oxygenase-1 on trinitrobenzene sulfonic acid-induced colitis in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G586-594. https://doi.org/10.1152/ajpgi.2001.281.2.G586
  35. Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. and Liang, G. (2011) Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem. 54, 8110-8123. https://doi.org/10.1021/jm200946h
  36. Yasui, Y., Nakamura, M., Onda, T., Uehara, T., Murata, S., Matsui, N., Fukuishi, N., Akagi, R., Suematsu, M. and Akagi, M. (2007) Heme oxygenase-1 inhibits cytokine production by activated mast cells. Biochem. Biophys. Res. Commun. 354, 485-490. https://doi.org/10.1016/j.bbrc.2006.12.228

Cited by

  1. Inhibitory Effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a Chalcone Derivative on MCP-1 Expression in Macrophages via Inhibition of ROS and Akt Signaling vol.23, pp.2, 2015, https://doi.org/10.4062/biomolther.2014.127
  2. PDK1 in NF-κB signaling is a target of Xanthium strumarium methanolic extract-mediated anti-inflammatory activities vol.190, 2016, https://doi.org/10.1016/j.jep.2016.06.019
  3. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury vol.6, pp.1, 2016, https://doi.org/10.1038/srep25130
  4. Syk and IRAK1 Contribute to Immunopharmacological Activities of Anthraquinone-2-carboxlic Acid vol.21, pp.6, 2016, https://doi.org/10.3390/molecules21060809
  5. Isoegomaketone Upregulates Heme Oxygenase-1 in RAW264.7 Cells via ROS/p38 MAPK/Nrf2 Pathway vol.24, pp.5, 2016, https://doi.org/10.4062/biomolther.2015.194
  6. Anti-Inflammatory and Gastroprotective Roles of Rabdosia inflexa through Downregulation of Pro-Inflammatory Cytokines and MAPK/NF-κB Signaling Pathways vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020584
  7. A Potent Tyrosinase Inhibitor, (E)-3-(2,4-Dihydroxyphenyl)-1-(thiophen-2-yl)prop-2-en-1-one, with Anti-Melanogenesis Properties in α-MSH and IBMX-Induced B16F10 Melanoma Cells vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102725
  8. YJI-7 Suppresses ROS Production and Expression of Inflammatory Mediators via Modulation of p38MAPK and JNK Signaling in RAW 264.7 Macrophages vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2016.276
  9. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence vol.11, pp.None, 2014, https://doi.org/10.3389/fphar.2020.592654