DOI QR코드

DOI QR Code

Characteristics of surface damage with applied current density and cavitation time variables for 431 stainless steel in seawater

431 스테인리스강의 해수 내 적용 전류밀도 및 캐비테이션 시간 변수에 따른 표면손상 특성

  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University) ;
  • Chong, Sang-Ok (Division of marine engineering, Mokpo national maritime university)
  • Received : 2014.05.23
  • Accepted : 2014.09.25
  • Published : 2014.09.30

Abstract

It is generated for cavitation erosion due to the local static boiling by pressure differentials in high speed rotating fluid environment. The cavitation is influenced by various elements such as pressure, velocity, temperature, pH of fluid and medium. In particular, the damage of material is accelerated due to the electrochemical corrosion by $C1^-$ and cavitation erosion due to cavities in seawater. In this paper, hence, it investigated for martensite stainless steel the damage behavior with applied current density and cavitation time in natural seawater solution. Less damage depth at the cavitation condition was observed than static condition as a result of galvanostatic experiment. Furthermore, it was shown that dramatic increase of weightloss, damage rate and damage depth after 3 hour of cavitation test.

고속유체 환경에서 압력차에 의한 국부적 비등으로 캐비테이션 침식 손상이 발생한다. 캐비테이션은 유체의 압력, 속도, 온도, pH, 그리고 매질 등의 다양한 환경에 영향을 받는다. 특히 해수 용액에서 캐비테이션 환경에 노출될 경우 염소이온에 의한 부식이 캐비티에 의한 침식 손상을 가속화 시킨다. 따라서 본 연구는 마르텐사이트계 스테인리스강에 대해 천연 해수 용액에서 적용 전류밀도와 캐비테이션 시간에 따른 시편 손상 경향을 규명하였다. 정전류 실험 결과 캐비테이션 조건에서 정적인 조건에 비해 비교적 적은 손상 경향이 나타났다. 또한 캐비테이션 실험 결과 3시간부터 급격하게 무게 감소량, 캐비테이션 손상률, 손상깊이가 증가하였다.

Keywords

References

  1. R. Baptista, V. Infante, and C. Branco, "Study of the fatigue behavior in welded joints of stainless steels treated by weld toe grinding and subjected to salt water corrosion," International journal of fatigue, vol. 30, no. 3, pp. 453-462, 2008. https://doi.org/10.1016/j.ijfatigue.2007.04.011
  2. T. Momma and A. Lichtarowicz, "A study of pressure and erosion produced by collapsing cavitation," Wear, vol. 186-187, no. 2, pp. 425-436, 1995. https://doi.org/10.1016/0043-1648(95)07144-X
  3. M. K. Lee, S. M. Hong, G. H. Kim, and C. K. Rhee, "Investigation of the impact load and erosive pit damage on the SUS316 and 8.8Al-bronze alloys by cavitation bubble collapse," Journal of the Korean Institute of Metals and Materials, vol. 44, no. 5, pp. 350-358. 2006 (in Korean).
  4. A. J. Sedriks, Corrosion of Stainless Steels, Wiley-Interscience, New York, pp. 115-166, 1996.
  5. D. A. Jones, Principles and Prevention of Corrosion, 2nd Edition, p. 334, 1996.
  6. I. R. Jones and D. H. Edward, "Experimental study of forces generated by the collapse of transient cavities in water," Journal of Fluid Mechanics, vol. 7, no. 4, p. 596, 1960. https://doi.org/10.1017/S0022112060000311
  7. R. J. K. Wood and S. A. Fry, "The synergistic effect or cavitation erosion and corrosion for Copper and Cupro-Nickel in seawater," Jorunal of Fluid Engineering, vol. 111, no. 3, pp. 271-277, 1989. https://doi.org/10.1115/1.3243641
  8. ASTM, "G32-92, standard test method for cavitation erosion using vibratory apparatus", Philadelphia, Annual Book of ASTM Standards 3, 1992.
  9. P. V. Marques and R. E. Tevisan, "An SEM-based method for the evaluation of the cavitation erosion behavior of materials," Materials Characterization, vol. 41, no. 5, pp. 193-200, 1998. https://doi.org/10.1016/S1044-5803(98)00038-2
  10. C. McCaul, An Advanced Cavitation Resistance Austenitic Stainless Steel for Pump, Houston, NACE International, 1996.
  11. S. J. Kim and K. Y. Hyun, "Investigation on surface hardening and corrosion characteristics by water cavitation peening with time for Al 5052-O alloy," Corrosion Science and Technology, vol. 11, no. 4, pp. 151-156, 2012.
  12. J. C. Park, S. J. Lee, and S. J. Kim, "Cavitation and electrochemical characteristics using hydrogen overpotential method for ALBC3 alloy," Journal of Korea Institute of Surface Engineering, vol. 44, no. 6, pp. 277-283, 2011 (in Korean). https://doi.org/10.5695/JKISE.2011.44.6.277
  13. H. K. Tonshoff and F. Kross, "Increasing fatigue strength by water peening," International Journal of Fatigue, vol. 17, no. 8, p. 588, 1995.
  14. K. Hirano, K. Enomoto, E. Hayashi, and K. Kurosawa, "Effect of water jet peening on corrosion resistance and fatigue strength of type 304 stainless steel," Journal of the Society of Materials Science, vol. 45, no. 7, pp. 740-745, 1996. https://doi.org/10.2472/jsms.45.740
  15. M. Qin, D. Y. Ju, and R. Oba, "Investigation of the influence of incidence angle on the process capability of water cavitation peening," Surface & Coating Technology, vol. 201, no. 3, pp. 1409-1413, 2006. https://doi.org/10.1016/j.surfcoat.2006.02.006
  16. H. Soyama, Y. Yamauchi, Y. Adach, K. Sato, T. Shindo, and R. Oba, "High-speed observations of the cavitation cloud around a high-speed submerged water jet," Jorunal of the Japan Society of Mechanical Engineers, vol. 38, no. 2, pp. 245-251, 1995.
  17. H. Soyama, Y. Yamauchi, T. okohagi, R. Oba, K. Sato, T. Shindo, and R. Oshima, "Marked peening efects by high speed submerged water jets," Journal of Jet Flow Engineering, vol. 13, no. 1, pp. 25-32, 1996.
  18. G. Bregliozzi, A. D. Schino, S. I. U. Ahmed, J. M. Kenny, and H. Haefke, "Cavitation wear behaviour of austenitic stainless steels with different grain sizes," Wear, vol. 258, no. 1-4, pp. 503-510, 2005. https://doi.org/10.1016/j.wear.2004.03.024
  19. S. J. Kim, K. Y. Hyun, and S. K. Jang, "Effects of water cavitation peening on electrochemical characteristic by using micro-droplet cell of Al-Mg alloy," Current Applied Physics, vol. 12, no. 2, pp. S24-S30, 2012.
  20. H. G. Feller and Y. Kharrazi, "Cavitation erosion of metals and alloys," Wear, vol. 93, no. 3, pp. 249-260, 1984. https://doi.org/10.1016/0043-1648(84)90199-6