DOI QR코드

DOI QR Code

Initial Mass Function and Star Formation History in the Small Magellanic Cloud

  • Lee, Ki-Won (Institute of Liberal Education, Catholic University of Daegu)
  • Received : 2014.07.31
  • Accepted : 2014.09.17
  • Published : 2014.09.30

Abstract

This study investigated the initial mass function (IMF) and star formation history of high-mass stars in the Small Magellanic Cloud (SMC) using a population synthesis technique. We used the photometric survey catalog of Lee (2013) as the observable quantities and compare them with those of synthetic populations based on Bayesian inference. For the IMF slope (${\Gamma}$) range of -1.1 to -3.5 with steps of 0.1, five types of star formation models were tested: 1) continuous; 2) single burst at 10 Myr; 3) single burst at 60 Myr; 4) double bursts at those epochs; and 5) a complex hybrid model. In this study, a total of 125 models were tested. Based on the model calculations, it was found that the continuous model could simulate the high-mass stars of the SMC and that its IMF slope was -1.6 which is slightly steeper than Salpeter's IMF, i.e., ${\Gamma}=-1.35$.

Keywords

References

  1. Bastian, N., Covey, K.R., and Meyer, M.R., 2010, A universal stellar initial mass function? a critical look at variations, 48, 339-389.
  2. Bessell, M.S., Castelli, F., and Plez, B., 1998, Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O-M stars. Astronomy and Astrophysics, 333, 231-250.
  3. Charbonnel, C., Meynet, G., Maeder, A., Schaller, G., and Schaerer, D., 1993, Grids of stellar models. III. From 0.8 to 120 $M_\bigodot$ at Z=0.004. Astronomy and Astrophysics Supplement, 101, 415-419.
  4. Crowther, P.A., Schnurr, O., Hirschi, R., Yusof, N., Parker, R.J., Goodwin, S.P., and Kassim, H.A., 2010, The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150$M_\bigodot$ stellar mass limit. Monthly Notices of the Royal Astronomical Society, 408, 731-751. https://doi.org/10.1111/j.1365-2966.2010.17167.x
  5. Gardiner, L.T. and Hatzidimitriou, D., 1992, Stellar populations and the large-scale structure of the Small Magellanic Cloud-IV. Age distribution studies of the outer regions. Monthly Notices of the Royal Astronomical Society, 257, 195-224. https://doi.org/10.1093/mnras/257.2.195
  6. Gilmore, G. and Howell, D., 1998, The stellar initial mass function: 38th Herstmonceux conference. Astronomical Society of the Pacific Conference Series, 142, 240 p.
  7. Greggio, L., 1986, The brightest stars in galaxies - a theoretical simulation. Astronomy and Astrophysics, 160, 111-115.
  8. Harries, T.J., Hilditch, R.W., and Howarth, I.D., 2003, Ten eclipsing binaries in the Small Magellanic Cloud: Fundamental parameters and Cloud distance. Monthly Notices of the Royal Astronomical Society, 339, 157-172. https://doi.org/10.1046/j.1365-8711.2003.06169.x
  9. Harris, J. and Zaritsky, D., 2004, The star formation history of the Small Magellanic Cloud. The Astronomical Journal, 127, 1531-1544. https://doi.org/10.1086/381953
  10. Howarth, I.D. and Prinja, R.K., 1989, The stellar winds of 203 Galactic O stars: A quantitative ultraviolet survey. The Astrophysical Journal Supplement, 69, 527-592. https://doi.org/10.1086/191321
  11. Humphreys, R.M., 1983, Studies of luminous stars in nearby galaxies. III. The Small Magellanic Cloud. The Astrophysical Journal, 265, 176-193 https://doi.org/10.1086/160662
  12. Lamb, J.B., Oey, M.S., Graus, A.S., Adams, F.C., and Segura-Cox, D.M., 2013, The initial mass function of field OB stars in the Small Magellanic Cloud. The Astrophysical Journal, 763, 101-114. https://doi.org/10.1088/0004-637X/763/2/101
  13. Lee, K.W., 2005, A photometric survey of the Small Magellanic Cloud. Ph.D. dissertation, University College London, London, UK, 222 p.
  14. Lee, K.W., 2013, A BVR photometric survey of the Small Magellanic Cloud with a mosaic CCD. Journal of the Korean Earth Science Society, 5, 415-427. https://doi.org/10.5467/JKESS.2013.34.5.415
  15. Leitherer, C., 1998, Populations of massive stars and the interstellar medium. In Aparicio, A., Herrero, A., and Sanchez, F. (eds.), Stellar astrophysics for the local group: VIII Canary Islands winter school astrophysics. Cambridge University Press, Cambridge, UK, 527-606.
  16. Lequeux, J., Peimbert, M., Rayo, J.F., Serrano, A., and Torres-Peimbert, S., 1979, Chemical composition and evolution of irregular and blue compact galaxies. Astronomy and Astrophysics, 80, 155-166.
  17. Maeder, A. and Meynet, G., 2001, Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astronomy and Astrophysics, 373, 555-571. https://doi.org/10.1051/0004-6361:20010596
  18. Maeder, A. and Meynet, G., 2003, Stellar evolution with rotation and magnetic fields. I. The relative importance of rotational and magnetic effects. Astronomy and Astrophysics, 411, 543-552. https://doi.org/10.1051/0004-6361:20031491
  19. Maeder, A. and Meynet, G., 2004, Stellar evolution with rotation and magnetic fields. II. General equations for the transport by Tayler-Spruit dynamo. Astronomy and Astrophysics, 422, 225-237. https://doi.org/10.1051/0004-6361:20034583
  20. Massey, P., Lang, C.C., Degioia-Eastwood, K., and Garmany, C.D., 1995, Massive stars in the field and associations of the Magellanic Clouds: The upper mass limit, the initial mass function, and a critical test of main-sequence stellar evolutionary theory. The Astrophysical Journal, 438, 188-217. https://doi.org/10.1086/175064
  21. Miller, G.E. and Scalo, J.M., 1979, The initial mass function and stellar birthrate in the solar neighborhood. The Astrophysical Journal Supplement, 41, 513-547. https://doi.org/10.1086/190629
  22. Olszewski, E.W., Suntzeff, N.B., and Mateo, M., 1996, Old and intermediate-age stellar populations in the Magellanic Cloud. Annual Review of Astronomy and Astrophysics, 34, 511-550. https://doi.org/10.1146/annurev.astro.34.1.511
  23. Pagel, B.E.J. and Tautbvaisiene G., 1998, Chemical evolution of the Magellanic Clouds: Analytical models. Monthly Notices of the Royal Astronomical Society, 299, 535-544. https://doi.org/10.1046/j.1365-8711.1998.01792.x
  24. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., 1992, Numerical recipes in Fortran. Cambridge University Press, Cambridge, UK, 277-280.
  25. Salpeter, E.E., 1955, The luminosity function and stellar evolution. The Astrophysical Journal, 121, 161-167. https://doi.org/10.1086/145971
  26. Scalo, J.M., 1986, The stellar initial mass function. Fundamentals of Cosmic Physics, 11, 1-278
  27. Schild, H. and Maeder, A., 1983, The relation between luminosity of the brightest blue star and the luminosity of its parent galaxy. Astronomy and Astrophysics, 127, 238-240.
  28. Schlesinger, B.M., 1969, Theoretically predicted colormagnitude diagrams for clusters and the observations. The Astrophysical Journal, 157, 533-544. https://doi.org/10.1086/150093
  29. Schultz, G.V. and Wiemer, W., 1975, Interstellar reddening and IR-excess of O and B stars. Astronomy and Astrophysics, 43, 133-139.
  30. Stryker, L.L., Da Costa, G.S., and Mould, J.R., 1985, The main-sequence turnoff of the old SMC globular cluster NGC 121. The Astrophysical Journal, 298, 544-559. https://doi.org/10.1086/163639
  31. Tolstoy, E. and Saha, A., 1996, The interpretation of colormagnitude diagrams through numerical simulation and Bayesian inference. The Astrophysical Journal, 462, 672-683. https://doi.org/10.1086/177181
  32. Tosi, M., Greggio, L., Marconi, G., and Focardi, P., 1991, Star formation in dwarf irregular galaxies-Sextans B. The Astronomical Journal, 102, 951-974. https://doi.org/10.1086/115925
  33. Westerlund, B.E., 1997, The Magellanic Clouds. Cambridge University Press, Cambridge, UK, 292 p.
  34. van den Bergh, S., 2000, The galaxies of the local group. Cambridge University Press, Cambridge, UK, 348 p.
  35. Zaritsky, D., Harries, J., Thompson, I.B., Grebel, E.K., and Massey, P., 2002, The Magellanic Clouds photometric survey: The Small Magellanic Cloud stellar catalog and extinction map. The Astronomical Journal, 123, 855-872. https://doi.org/10.1086/338437