• Title/Summary/Keyword: star formation

Search Result 696, Processing Time 0.031 seconds

Examining the star formation properties of Virgo galaxies undergoing ram pressure stripping

  • Mun, Jae Yeon;Hwang, Ho Seong;Chung, Aeree;Yoon, Hyein;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.75.3-75.3
    • /
    • 2019
  • Understanding how ram pressure stripping (RPS) affects the star formation activity of cluster galaxies is one of the important issues in astrophysics. To examine whether we can identify any discernible trend in the star formation activity of galaxies undergoing ram pressure stripping, we study the star formation properties of galaxies in the Virgo cluster for which high-resolution HI images are available. We first classify galaxies in the Extended Virgo Cluster Catalog into different stages of RPS based on their HI morphology, HI deficiency, and location in phase space. We then examine various star formation activity indicators of these galaxies, which include starburstiness, g - r color, and WISE [3.4]-[12] color. No noticeable enhancement in star formation was identified for galaxies undergoing early or active stripping. Our results suggest that star formation activity at best seems to be enhanced locally in such galaxies, making it challenging to detect with integrated photometry. With the combination of HI deficiencies and locations in phase space, we were instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, which agree with previous studies.

  • PDF

Local TIGRESS Simulations of Star Formation in Spiral Galaxies

  • Kim, Woong-Tae;Kim, Chang-Goo;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2021
  • Spiral arms greatly affect gas flows and star formation in disk galaxies. We use local 3D simulations of vertically-stratified, self-gravitating, gaseous disks under a stellar spiral potential to study the effects of spiral arms on galactic star formation as well as formation of gaseous spurs/feathers. We adopt the TIGRESS framework to handle radiative heating and cooling, star formation, and ensuing supernova (SN) feedback. We find that more than 90% of star formation takes place inside spiral arms. The global star formation rate (SFR) in models with spiral arms is enhanced by less than a factor of 2 compared to the no-arm counterpart. This supports the picture that spiral arms do not trigger star formation but rather redistribute star-forming regions. Correlated SN feedback produces interarm feathers in both magnetized and unmagnetized models. These feathers live short, have parallel magnetic fields along their length, and are bounded by SN feedback in the lateral direction, in contrast to instability-induced feathers formed in our previous isothermal simulations.

  • PDF

What Determines Star Formation Rates?

  • Evans, Neal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.29.4-29.4
    • /
    • 2016
  • The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated molecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation "efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.

  • PDF

STUDYING THE MORPHOLOGY AND STAR FORMATION OF GALAXIES AS A PROBE OF GALAXY EVOLUTION

  • CHEN, HSUAN-JU;HWANG, CHORNG-YUAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.511-512
    • /
    • 2015
  • Star formation activities dominate the evolution of galaxies. Elliptical galaxies are believed to be old galaxies in the Hubble sequence, and elliptical galaxies at different evolution epochs might have different star formation activities and/or morphologies. We investigate the connection between star formation rates and the morphology of elliptical galaxies. With the Sloan Digital Sky Survey (SDSS) and the Galaxy Zoo, we select a sample of elliptical galaxies by morphology and consider their infrared emission as an index of star formation rate to study the relation between the star formation rates and their morphological properties, such as ellipticities. In addition, we select some nearby spiral galaxies with very low MIR emission to probe the mechanisms of these red spiral galaxies. We display our preliminary results and discuss their implication on the evolution of galaxies in this poster.

STAR FORMATION HISTORY AND DUST PRODUCTION: NGC147 AND NGC185

  • GOLSHAN, ROYA HAMEDANI;JAVADI, ATEFEH;VAN LOON, JACCO TH.;KHOSROSHAHI, HABIB G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.169-171
    • /
    • 2015
  • NGC147 and NGC185, paired satellites of the Andromeda galaxy, possess the same order of mass and analogous structures, but they show different star formation and different amounts of interstellar gas and dust. Therefore, we present the first reconstruction of the star formation history of NGC147 and NGC185. Asymptotic Giant Branch stars are highly evolved stars that are brightest in K-band. This maximum K-band magnitude is related to the birth mass of stars. As a result, we have found a 9.9 Gyr old single star formation epoch for NGC185 followed by relatively continuous star formation. NGC147, however, has passed through two star formation episodes; one is as old as ~6 Gyr and the other is as recent as ~850 Myr. Asymptotic Giant Branch stars are also important dust factories; by fitting Spectral Energy Distributions to observed near and mid infrared data for each star, we were able to measure the dust production rates of individual stars; on order of $10^{-5}M_{\odot}yr^{-1}$. Hence, we estimate the total mass entering the interstellar medium to be $1.06{\times}10^{-4}M_{\odot}yr^{-1}$ and $2.89{\times}10^{-4}M_{\odot}yr^{-1}$ for NGC147 and NGC185.

What Controls Star Formation In Nuclear Rings of Barred Galaxies?

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.31.2-31.2
    • /
    • 2013
  • We use grid-based hydrodynamic simulations to study star formation in nuclear rings in barred galaxies. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. To investigate various situations, we vary the total gas content in the bar regions and the bar growth time. We find that star formation rate (SFR) in a nuclear ring is determined by the mass inflow rate to the ring rather than the total gas mass in the ring. The SFR shows a strong primary burst and weak secondary bursts at early time, and declines to small values at late time. The primary burst is caused by the rapid gas infall to the ring due to the bar growth, with its duration and peak depending on the bar growth time. The secondary bursts result from re-infall of the ejected gas by star formation feedback of the primary burst. When the SFR is low, ages of young star clusters exhibit an azimuthal gradient along the ring since star formation takes place mostly near the contact points between the dust lanes and the nuclear ring. When the SFR is large, on the other hand, star formation is widely distributed throughout the whole length of the ring, with no apparent age gradient of star clusters. Regardless of SFR, star clusters have a positive radial age gradient, with younger clusters located closer to the ring, since the ring shrinks in size over time.

  • PDF

Recent Star Formation History of M31 and M33

  • Kang, Yongbeom;Bianchi, Luciana;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2013
  • We studied recent evolution of M31 and M33 with star-forming regions and hot massive stars. We use GALEX far-UV and near-UV imaging to detect the star-forming regions and trace the recent star formation across the entire disk of galaxies. The GALEX imaging, combining deep sensitivity and entire coverage of these galaxies, provides a complete picture of the recent star formation in M31 and M33, and its variation with environment throughout these galaxies. We also show results from recent extensive surveys in M31 and M33 with Hubble Space Telescope multi-wavelength data including UV filters, which imaged several regions at a linear resolution of less than half a pc in these galaxies. Both datasets allow us to study the hierarchical structure of star formation: the youngest stellar groups are the most compact, and are often arranged withing broader, sparser structures. The derived recent star-formation rates are rather similar for the two galaxies, when scaled for the respective areas.

  • PDF

Satellite Overquenching Problem

  • Yi, Suk-Young;Kimm, Tay-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.34.3-34.3
    • /
    • 2009
  • We have investigated the recent star formation history of the nearby galaxies using the SDSS optical and Galex UV data. To everyone's surprise, we found that roughly 30 percent of elliptical galaxies had a residual star formation in the last billion years, suggesting that residual star formation has been common even in ellipticals. Galaxy evolution models based on semi-analytic prescriptions including AGN feedback reasonably reproduce the star formation properties of elliptical galaxies. However, we found that the current galaxy models miserably fail to reproduce the star formation properties of satellite disc galaxies in cluster environments. Satellite disc galaxies in models are overly star-formation quenched in comparison to observation. Detailed investigations led us to conclude that this is due to the use of inaccurate prescriptions for the gas content evolution in the model. I present a solution to the problem by adopting more realistic physical prescriptions.

  • PDF

Constraining Physical Properties of High-redshift Galaxies : Effects of Star-formation Histories

  • Lee, Seong-Kook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • Constraining physical (or stellar population) properties - such as stellar mass, star-formation rate, stellar population age, and dust-extinction - of galaxies from observation is crucial in the study of galaxy evolution. This is very challenging especially for high-redshift galaxies, and a widely-used method to estimate physical properties of high-redshift galaxies is to compare their photometric spectral energy distributions (SEDs) to spectral templates from stellar population synthesis models. I will show that the SED-fitting results of high-redshift galaxies are strongly dependent on the assumed forms of star-formation histories. I will also present the results of SED-fitting analysis of observed Lyman-break galaxies which show that parametric models with gradually increasing star-formation histories provide better estimates of physical parameters of high-redshift (z>3) star-forming galaxies than traditionally-used exponentially declining star-formation histories. This result is also consistent with the predictions from the modern galaxy formation models.

  • PDF

The main sequence of star forming galaxies at intermediate redshift

  • Salmi, Fadia
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.71.2-71.2
    • /
    • 2014
  • processes at the origin of the star formation in the galaxies over the last 10 billions years. While it was proposed in the past that merging of galaxies has a dominant role to explain the triggering of the star formation in the distant galaxies having high star formation rates. In the opposite, more recent studies revealed scaling laws linking the star formation rate in the galaxies to their stellar mass or their gas mass. The small dispersion of these laws seems to be in contradiction with the idea of powerful stochastic events due to interactions, but rather in agreement with the new vision of galaxy history where the latter are continuously fed by intergalactic gas. I was especially interested in one of this scaling law, the relation between the star formation (SFR) and the stellar mass (M*) of galaxies, commonly called the main sequence of star forming galaxies. I have studied this main sequence, SFR-M*, in function of the morphology and other physical parameters as the radius, the colour, the clumpiness. The goal was to understand the origin of the sequence's dispersion related to the physical processes underlying this sequence in order to identify the main mode of star formation controlling this sequence. This work needed a multi-wavelength approach as well as the use of galaxies profile simulation to distinguish between the different galaxy morphological types implied in the main sequence.

  • PDF