• Title/Summary/Keyword: initial mass function

Search Result 147, Processing Time 0.025 seconds

INITIAL LUMINOSITY FUNCTION AND INITIAL MASS FUNCTION FOR OPEN CLUSTERS AND ASSOCIATIONS

  • Lee, See-Woo;Chun, Moo-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.1
    • /
    • pp.37-55
    • /
    • 1988
  • Combining the luminosity functions of main sequence stars in 3 associations and 22 open clusters, the initial luminosity function and mass function for these clusters are derived. For stars of m > $0.6m_{\odot}$, they are well consistent with those for the field stars.

  • PDF

THE LUMINOSITY FUNCTION AND INITIAL MASS FUNCTION FOR THE PLEIADES CLUSTER

  • LEE SEE WOO;SUNG HWANKYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.45-59
    • /
    • 1995
  • In the best observed Pleiades cluster, the luminosity function(LF) and mass function(MF) for main sequence(MS) stars extended to $Mv{\approx}15.5(V{\approx}21)$ are very similar to the initial luminosity function(ILF) and initial mass function(IMF) for field stars in the solar neighborhood showing a bump at log $m{\simeq}-0.05$ and a dip at log $m{\simeq}-0.12$. This dip is equivalent to the Wielen dip appearing in the LF for the field stars. The occurence of these bump and dip is independent of adopted mass-luminosity relation(MLR) . and their characteristics could be explained by a time-dependent bimodal IMF. The model with this IMF gives a total cluster mass of $\~700M_\bigodot,\;\~25$ brown dwarfs and $\~3$ white dwarfs if the upper mass limit of progenitor of white dwarf is greater than $4.5M_\bigodot$. The cluster age on the basis of LF for brightest stars is given by $\~8\times10^7yr$ and all stars in the cluster lie along the single age sequence in the C-M diagram without showing a large dispersion from the sequence.

  • PDF

Initial Mass Function and Star Formation History in the Small Magellanic Cloud

  • Lee, Ki-Won
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.362-374
    • /
    • 2014
  • This study investigated the initial mass function (IMF) and star formation history of high-mass stars in the Small Magellanic Cloud (SMC) using a population synthesis technique. We used the photometric survey catalog of Lee (2013) as the observable quantities and compare them with those of synthetic populations based on Bayesian inference. For the IMF slope (${\Gamma}$) range of -1.1 to -3.5 with steps of 0.1, five types of star formation models were tested: 1) continuous; 2) single burst at 10 Myr; 3) single burst at 60 Myr; 4) double bursts at those epochs; and 5) a complex hybrid model. In this study, a total of 125 models were tested. Based on the model calculations, it was found that the continuous model could simulate the high-mass stars of the SMC and that its IMF slope was -1.6 which is slightly steeper than Salpeter's IMF, i.e., ${\Gamma}=-1.35$.

Initial Size Distribution of the Milky Way Globular Clusters

  • Shin, Ji-Hye;Kim, Sung-Soo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.35.1-35.1
    • /
    • 2010
  • Unlike the initial mass function, the initial size distribution of globular cluster (GC) systems is not well known. We calculate the evolution of the mass function (MF), radial distribution (RD), and size distribution (SD) of the Galactic GC system. By comparing the results from this calculation and the present-day MF, RD, and SD of the Galactic GC system, we infer the initial SD of the GC system. We find that a Gaussian distribution of the half-mass radius and a Gaussian distribution of the half-mass to Jacobi radius ratio are the best-fit initial SDs of the Galactic GC system.

  • PDF

A STUDY ON THE INITIAL MASS FUNCTION OF HALO STARS

  • LEE SANG-GAK
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.141-152
    • /
    • 1993
  • The sample of sub dwarfs are selected from LHS catalogue on the bases of the reduced proper motion diagram utilizing Chui criteria, and confirmed with the available photometric and/or kinematic data. Among them, 20 sub dwarfs have trigonometric parallaxes with accuracy better than $20\%$. The color­absolute magnitude relation is derived with them. By adopting this color-magnitude relation and $V/V_m$ method, we have derived the sub dwarf luminosity function over the absolute magnitude range of $M_v$= 4.5 and 9.5. This halo luminosity function is consistent with that of Eggen(1987). By adopting the available mass-luminosity relations for halo stars, we have found that the halo IMF is steeper than disk IMFs of Scalo(1986) and Salpter(1955) in this small mass region.

  • PDF

TIME-DEPENDENT INITIAL MASS FUNCTION AND PRESENT DAY MASS FUNCTION OF OPEN CLUSTERS

  • Lee, See-Woo;Kim, Yong-Ha
    • Journal of The Korean Astronomical Society
    • /
    • v.16 no.2
    • /
    • pp.43-54
    • /
    • 1983
  • The present day mass functions of main sequence stars in the well observed open clusters, Hyades, Praesepe, Pleiades, NGC 654 and NGC 6530 arc derived and compared with those computed from the model of time-dependent initial mass function and star formation rate. The agreements between the observed and computed present day mass functions suggest the importance of fragmentation process at the early phase and fragment interaction at the later phase of cluster evolution. This process of star formation is different from that related to the evolution of the solar neighborhood, and also could explain the lack of low mass stars observed in some open clusters.

  • PDF

TWO COMPONENT MODEL OF INITIAL MASS FUNCTION

  • Hong, S.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.89-93
    • /
    • 1981
  • Weibull analyses given to the initial mass function (IMF) deduced by Miller and Scalo (1979) have shown that the mass dependence of IMF is an exp$[-{\alpha}m]$- form in low mass range while in the high mass range it assumes an exp$[-{\alpha}\sqrt{m}]/\sqrt{m}$-form with the break-up being at about the solar mass. Various astrophysical reasonings are given for identifying the exp$[-{\alpha}m]$ and exp$[-{\alpha}\sqrt{m}]/\sqrt{m}$ with halo and disk star characteristics, respectively. The physical conditions during the halo formation were such that low mass stars were preferentially formed and those in the disk high mass stars favoured. The two component nature of IMF is in general accord with the dichotomies in various stellar properties.

  • PDF

Dynamical Evolution of Mass Function and Radial Profile of the Globular Cluster System of M87

  • Shin, Ji-Hye;Kim, Sung-Soo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2010
  • M87, a cD galaxy in the Virgo cluster, has 3-10 times larger enclosed mass than the Milky Way at any given galactocentric radius. Thus the globular cluster (GC) system in M87 is expected to have undergone a more significant dynamical evolution than that of the Milky Way if it had started from the same initial mass function (MF) and radial distribution (RD) as the Milky Way. The evolution of MF and RD of the M87 GC system has been calculated using an advanced, realistic Fokker-Planck (FP) model that considers dynamical friction, disk/bulge shocks, and eccentric cluster orbits. We perform hundreds of FP calculations with different initial cluster conditions, and then search a wide parameter space for the best-fit initial GC MF and RD that evolves into the observed present-day GC MF and RD. We also find best-fit initial MFs and RDs for blue and red GC groups, separately.

  • PDF

COLOR GRADIENTS WITHIN GLOBULAR CLUSTERS: RESTRICED NUMERICAL SIMULATION

  • Sohn, Young-Jong;Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 1997
  • The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salperter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.

  • PDF