DOI QR코드

DOI QR Code

Fabrication and Photocatalytic Activity of TiO2 Nanofibers Dispered with Silica Nanoparticles

SiO2 나노입자가 분산된 TiO2 나노섬유의 제작 및 광촉매 특성 분석

  • Received : 2014.02.25
  • Accepted : 2014.05.25
  • Published : 2014.10.01

Abstract

In this study, we suggest a facile method to control conditions of single component independently when preparing consisting two-component metal oxides nanofiber by simply dispersing nanoparticles in precursor solution. The well dispersed $SiO_2$ nanoparticles in $TiO_2$ nanofibers were successfully synthesized through a simple electrospinning process. The as-synthesized nanodfibers were investigated via FE-SEM, XRD and EDS for structural studies, furthermore, the analysis of UV-VIS and photocatalytic activity were carried out for demonstrate the effect of $SiO_2$ nanoparticles dispersed in $TiO_2$ nanofibers. As a result, $TiO_2$ nanofibres dispersed with $SiO_2$ nanoparticles have enhanced photocatalytic activity than that of $TiO_2$ nanofibres only. In this strategy, the introduction of $SiO_2$ nanoparticles in $TiO_2$ nanofibers were attribute to enlarge absorption in the visible region (380~440 nm). Additionally, $Br{\o}nsted$ acid sites generated in each metal oxide of Ti and Si increase OH radicals efficiently as well as it limit recombination loss by holding photogenerated electrons for high efficient photocatalytic activity.

본 연구에서는 전구체 각각의 독립제어가 가능한 이성분계 금속산화물을 얻기 위해 졸-겔법으로 합성한 실리카 나노입자를 $TiO_2$ 전구체와 교반시켜 전기방사법을 이용하여 실리카가 고르게 분산된 $TiO_2$ 나노섬유를 성공적으로 제작하였다. 제작된 나노섬유는 FE-SEM, XRD, EDS를 이용해 구조적 특성분석과 UV-VIS, 광촉매 반응기를 통해 광촉매 특성 분석을 하였다. 그 결과, 실리카가 분산된 $TiO_2$ 나노섬유는 실리카가 분산되지 않은 $TiO_2$ 나노섬유 보다 광촉매 효율이 10% 가량 향상되었다. 이는 실리카 나노입자가 첨가됨으로써 $TiO_2$가 흡수하지 못하는 380~440 nm 가시광선 영역을 흡수하여 광학적 특성 향상되었으며 Ti와 Si 두 금속산화물간에 $Br{\o}nsted$ acid site가 생성되어 OH 라디칼을 증가시킴으로써 광조사에 의해 여기된 전자를 잡아 재결합 손실을 억제하는 역할을 하여 화학적 특성이 개선되어 광촉매 효율이 증가되었을 것으로 사료된다.

Keywords

References

  1. Kim, J. H., "Photocatalysts for Hydrogen Production from Solar Water Splitting," Clean Technology, 19(3), 191-200(2013). https://doi.org/10.7464/ksct.2013.19.3.191
  2. Watthanaarun, J., Pavarajarn, V. and Supaphol, P, "Titanium (IV) Oxide Nanofibers by Combined Sol-gel and Electrospinning Techniques: Preliminary Report on Effects of Preparation Conditions and Secondary Metal Dopant," Sci. Technol. Adv. Mater., 6(3-4), 240-245(2005). https://doi.org/10.1016/j.stam.2005.02.002
  3. Hou, Z., Li, X., Li, C., Dai, Y., Ma, P. A., Zhang, X., Kang, X., Cheng, Z. and Lin, J, "Electrospun Upconversion Composite Fibers as Dual Drugs Delivery System with Individual Release Properties," Langmuir., 29(30), 9473-9482(2013). https://doi.org/10.1021/la402080y
  4. Joo, J. B., Zhang, Q., Dahl, M., Lee, I., Goebl, J., Zaera, F. and Yin, Y., "Control of the Nanoscale Crystallinity in Mesoporous $TiO_2$ Shells for Enhanced Photocatalytic Activity," Energy Environ. Sci., 5, 6321-6327(2012). https://doi.org/10.1039/c1ee02533c
  5. Lou, Z., Li, F., Deng, J., Wang, L. and Zhang, T., "Branch-like Hierarchical Heterostructure ($\alpha-Fe_2O_3/TiO_2$): A Novel Sensing Material for Trimethylamine Gas Sensor," ACS applied materials & interfaces, 5(23), 12310-12316(2013). https://doi.org/10.1021/am402532v
  6. Cavaliere, S., Subianto, S., Savych, I., Jones, D. J. and Rozière, J., "Electrospinning: Designed Architectures for Energy Conversion and Storage Devices," Energy Environ. Sci., 4, 4761-4785(2011). https://doi.org/10.1039/c1ee02201f
  7. Choi, K. I., Ho Lee, S., Park, J. Y., Choi, D. Y., Hwang, C. H., Lee, I. H. and Hwa, C. M., "Fabrication and Characterization of Hollow $TiO_2$ Fibers by Microemulsion Electrospinning for Photocatalytic Reactions," Mater. Lett., 112, 113-116(2013). https://doi.org/10.1016/j.matlet.2013.08.101
  8. Cavaliere, S., Subianto, S., Savych, I., Tillard, M., Jones, D. J. and Roziere, J., "Dopant-Driven Nanostructured Loose-Tube $SnO_2$ Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells," J. Phys. Chem. C., 117(36), 18298-18307(2013). https://doi.org/10.1021/jp404570d
  9. Kim, E. Y., "Preparation and Characterization of $TiO_2$ Nanoparticles and Films with Various Method," M. Dissertation, Inha University(2006).
  10. Alijani, S., Moghaddam, A. Z., Vaez, M. and Towfighi, J, "Characterization of $TiO_2$-coated Ceramic Foam Prepared by Modified Sol-gel Method and Optimization of Synthesis Parameters in Photodegradation of Acid Red 73," Korean J. Chem. Eng., 30(10), 1855-1866(2013). https://doi.org/10.1007/s11814-013-0125-5
  11. Miao, Y. E., Wang, R., Chen, D., Liu, Z. and Liu, T, "Electrospun Self-Standing Membrane of Hierarchical $SiO_2@\gamma$-AlOOH (Boehmite) Core/Sheath Fibers for Water Remediation," ACS applied materials & interfaces, 4(10), 5353-5359(2012). https://doi.org/10.1021/am3012998
  12. Ya, J., An, L., Liu, Z., Lei, E., Zhao, W., Zhao, D. and Liu, C. "Structural and Photoelectro Chemical Characterization of $TiO_2$ Nanowire/nanotube Electrodes by Electrochemical Etching," Korean J. Chem. Eng., 29(6), 731-736(2012). https://doi.org/10.1007/s11814-011-0241-z
  13. Jung, K. Y. and Park, S. B., "Enhanced Photoactivity of Silicaembedded Titania Particles Prepared by Sol-gel Process for the Decomposition of Trichloroethylene," Applied Catalysis B: Environmental, 25(4), 249-256(2000). https://doi.org/10.1016/S0926-3373(99)00134-4
  14. Ai, G., Sun, W. T., Zhang, Y. L. and Peng, L. M., "Nanoparticle and Nanorod $TiO_2$ Composite Photoelectrodes with Improved Performance," Chem. Commun., 47, 6608-6610(2011). https://doi.org/10.1039/c1cc11092f

Cited by

  1. Preparation of Porous Nanostructures Controlled by Electrospray vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.627