DOI QR코드

DOI QR Code

Characteristics of Mercury Concentration in Vapor Phase from Compact Fluorescent Lamp

소형형광등(Compact Fluorescent Lamp)의 파쇄에 따른 기상에서의 수은농도 특성

  • Rhee, Seung-Whee (Department of Environmental Energy Engineering, College of Engineering, Kyonggi University)
  • 이승희 (경기대학교 공과대학 환경에너지공학과)
  • Received : 2014.03.06
  • Accepted : 2014.04.29
  • Published : 2014.10.01

Abstract

Mercury amount in vapor phase from 3 types of CFL(compact fluorescent lamp) are estimated by measuring mercury concentration in vapor phase. The mercury concentration in vapor phase from CFL is sharply decreased during initial time and then the change in the mercury concentration is slightly decreased up to 24 hours. The mercury concentration in vapor phase is almost constant after 42 hours, which can be called by stabilized concentration. It can be estimated that the stabilized concentration is caused by the evaporation of mercury in the residues of broken CFL and can be affected by temperature and pressure in crushing apparatus. The mercury concentration for CFL manufactures are in the order of A < B < C as the same results of the initial mercury concentration and the stabilized concentration in vapor phase. As increased air flow rate, the partial pressure of mercury is decreased and the amount of mercury is reduced. Initially, the mercury concentration in vapor phase emitted from CFLs is higher than the regulatory level of $0.1mg/m^3$ in the specific facilities regardless of air flow rate. Hence, it is absolutely necessary that mercury in vapor phase should be controlled at the point of crushing campact fluorescent lamp.

소형형광등(Compact fluorescent Lamp; CFL) 3종류를 파쇄할 때 발생하는 수은의 기상농도와 대기로 방출되는 수은 양을 평가하였다. CFL 파쇄 시 배출되는 수은 농도는 초기에 매우 급격하게 감소되었으나 24시간 이후에는 수은농도의 변화가 점차 작아졌으며, 이 후 42시간까지 일정 농도를 유지되었다. 이러한 일정한 농도를 안정화 농도(Stabilized concentration)로 나타내었고 안정화 농도는 기체상 수은이 거의 배출되어 파쇄장치에 잔류하는 액체상 수은이 온도와 기압에 의한 영향으로 기화되어 배출되는 것으로 판단되었다. 소형형광등에서 발생되는 수은농도는 회사별로 A사 < B사 < C사 순으로 나타났으며, 회사별로 수은의 안정화 농도와 안정화 시간은 A사 < B사 < C사 순으로 높았다. 공기유량이 증가함에 따라 수은 부분압은 감소하였으며, 이는 대기 중 수은의 양이 낮아짐을 의미하고 안정화 농도도 감소하는 것으로 나타났다. CFL 파쇄 시 초기의 수은 농도는 공기유량에 관계없이 $0.1mg/m^3$인 지정시설의 환경기준보다 매우 높으므로 소형형광등을 파쇄할 때 기상의 수은을 관리하는 것이 절대적으로 필요하다.

Keywords

References

  1. United Nations Environment Programme(UNEP) : Report on overall progress of the United Nations Global Mercury Partnership, http://www.unep.org/hazardoussubstances/Mercury/GlobalMercuryPartnership/tabid/1253/Default.aspx (October 2010).
  2. Silveira, T. R. G. and Chang, S. Y., "Fluorescent Lamp Recycling Initiatives in the United States and a Recycling Proposal Based on Extended Producer Responsibility and Product Stewardship Concepts," Waste Manage. Res., 29(6), 656-668(2011). https://doi.org/10.1177/0734242X10383744
  3. Yang, X., Zhuo, Y., Duan, Y., Chen, L., Yang, L., Zhang, L., Jiang, Y. and Xu, X., "Mercury Speciation and Its Emissions from a 220MW Pulverized Coal-fired Boiler Power Plant in Flue Gas," Korean J. Chem. Eng., 24(4), 711-715(2007). https://doi.org/10.1007/s11814-007-0031-9
  4. Chen, A., Dietrich, K. N., Huo, X. and Ho, S. M., "Developmental Neurotoxicants in E-Waste," An Emerging Health Concern, Environmental Health Perspectives, 119(4), 431-438(2011).
  5. Choi, H. K., Lee, C., Lee, H. K. and Lee, S. H., "Gaseous Mercury Removal in a Hybrid Particulate Collector," Korean J. Chem. Eng., 24(2), 361-367(2006). https://doi.org/10.1007/s11814-007-5055-7
  6. Hilkene, C. and Friesen, K., "Background Study on Increasing Recycling of End-of-life Mercury-containing Lamps from Residential and Commercial Sources in Canada," Action plan 2000 on climate change, Enhanced recycling program(2005).
  7. Ministry of Environment, "Notice No. 2012-239 and No. 2012-243," (2012).
  8. Korea Institute of Lighting Recycling Association, "Recycling of Domestic Waste Fluorescent Lamps," (2011).
  9. Schmechel, R., Kennedy, M., Seggern, von H., Winkler, H., Kolbe, M., Fischer, R. A., Xaomao, L., Benker, A., Winterer, M. and Hahn, H., "Luminescence Properties of Nanocrystalline $Y_2O_3$ : $Eu^{3+}$ in Different Host Materials," J. Appl. Phys., 89(3), 1679-1686(2001). https://doi.org/10.1063/1.1333033
  10. Rey-Raap, N. and Gallardo, A., "Determination of Mercury Distribution Inside Spent Compact Fluorescent Lamps by Atomic Absorption Spectrometry," Waste Manage., 32(5), 944-948(2012). https://doi.org/10.1016/j.wasman.2011.12.001
  11. Rey-Raap, N. and Gallardo, A., "Removal of Mercury Bonded in Residual Glass from Spent Fluorescent Lamps," J. Environ. Manage., 115, 175-178(2013). https://doi.org/10.1016/j.jenvman.2012.11.012
  12. Rhee, S. W. and Park, H. S., "Mercury Distribution of Major Components from 3-baned and General Spent Fluorescent Lamp," Journal of Korea Society of Waste Management, 30(3), 265-271(2013). https://doi.org/10.9786/kswm.2013.30.3.265
  13. Rhee, S. W., Choi, H. H. and Park, H. S., "Performance Evaluation of Material Separation from Spent Fluorescent Lamps Using the Thermal End-cutting Method," Springer, 15(4), 503-509(2013). https://doi.org/10.1007/s10163-013-0172-3
  14. Jang, M., Hong, S. M. and Park, J. K., "Characterization and Recovery of Mercury from Spent Fluorescent Lamps," Waste Manage., 25(1), 5-14(2005). https://doi.org/10.1016/j.wasman.2004.09.008
  15. Santos, E. J., Herrmann, A. B., Vieira, F., Sato, C. S., Correa, Q. B., Maranhao, T. A., Tormen, L. and Curtius, A. J., "Determination of Hg and Pb in Compact Fluorescent Lamp by Slurry Sampling Inductively Coupled Plasma Optical Emission Spectrometry," Microchem. J., 96(1), 27-31(2010). https://doi.org/10.1016/j.microc.2010.01.012
  16. Milestone, "DMA-80 Direct mercury analyzer, Operator manual,"(2011).

Cited by

  1. 수은의 밀도차에 의한 무전극 램프의 광특성 분석 vol.10, pp.6, 2014, https://doi.org/10.17661/jkiiect.2017.10.6.477