DOI QR코드

DOI QR Code

친환경 착제가 적용된 modified Fenton 공정을 이용한 BTEX로 오염된 지하수의 복원

BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent

  • Kwon, Yong-Jae (Department of Chemical Engineering, Hanyang University) ;
  • Jo, Young-Hoon (Department of Chemical Engineering, Hanyang University) ;
  • Jung, Jae-Gu (Department of Chemical Engineering, Hanyang University) ;
  • Kong, Sung-Ho (Department of Chemical Engineering, Hanyang University)
  • 투고 : 2014.02.25
  • 심사 : 2014.05.02
  • 발행 : 2014.10.01

초록

본 연구에서는 modified Fenton 공정에서 Fe(II)과 Fe(III)에 대한 유 무기 착제의 효율성 평가를 위해 BTEX(benzene, toluene, ethylbenzene, xylene) 분해효율을 관찰하였다. 적용된 유 무기착제의 종류는 구연산과 피로인산을 선정하였다. Fe(III)과 구연산이 적용되어진 modified Fenton 공정에서, 구연산의 농도가 증가할수록 BTEX의 분해율이 감소하였지만, 피로인산의 경우에는 농도가 증가할수록 BTEX의 분해율이 증가하였다. 또한 Fe(III)이 적용되어진 modified Fenton 공정에서 무기착제인 피로인산이 적용되어진 경우, 유기착제인 구연산이 적용되어진 경우보다 상대적으로 높은 BTEX의 분해율을 나타내었다. Fe(II)에 유 무기 착제가 적용되어진 modified Fenton 공정을 비교한 결과, Fe(II)과 구연산의 몰비가 1:1일 때 pH 변화를 최소화시킴과 동시에 BTEX의 높은 분해율을 보였다. 결과적으로 과산화수소의 효율성, 철 침전물 생성여부, 오염물질 분해율 등이 고려되어질 때, 100 ppm의 벤젠분해를 위한 최적 Fe(II), 구연산 그리고 과산화수소의 농도 조건은 7 mM/7 mM/500 mM였다.

The effect of in-organic chelating agents with Fe(II) and Fe(III) in modified Fenton was evaluated to degradation BTEX (benzene, toluene, ethylbenzene, xylene). Citric acid and pyrophosphate were used in experimentals and an optimum chelating agent for BTEX degradation was determined. In $H_2O_2$/Fe(III)/citric acid, degradation of BTEX was decreased when concentration of citric acid was increased. In $H_2O_2$/Fe(III)/pyrophosphate, degradation of BTEX was increased when concentration of pyrophosphate was increased and degradation for BTEX was relatively high compared with $H_2O_2$/Fe(III)/citric acid. In $H_2O_2$/Fe(II)/chelating agents, degradation for BTEX was high and pH variation was minimized when molar ratio of Fe(II) and citric acid was 1:1. Optimum molar concentration of Fe(II), citric acid and $H_2O_2$ were 7 mM, 7mM and 500 mM for degradation of 100 mg/L of benzene to obtain best efficiency of $H_2O_2$, least precipitation of iron and best degradation.

키워드

참고문헌

  1. Liang, C., Huang, C. F. and Chen, Y. J., "Potential for Activated Persulfate Degradation of BTEX Contamination," Water Res., 42, 4091-4100(2004b).
  2. Lee, Y. M., Bae, S. J. and Lee, W. J., "Degradation of Carbon Tetrachloride in Modified Fenton Reaction," Korean J. Chem. Eng., 29(6), 769-774(2012). https://doi.org/10.1007/s11814-011-0261-8
  3. Watts, R. J., Bottenberg, B. C., Hess, T. F., Jensen, M, D. and Teel, A. L., "Role of Reductants in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton's Reactions," Environ. Technol., 33, 3432-3437(1999). https://doi.org/10.1021/es990054c
  4. Sun, Y. and Pignatello, J. J., "Chemical Treatment of Pesticide Wastes. Evaluation of Fe(III) Chelates for Catalytic Hydrogen Peroxide Oxidation of 2,4-D at Circumneutral pH," J. Agric. Food Chem., 40(2), 322-327(1992). https://doi.org/10.1021/jf00014a031
  5. Sillanpaa, M. and Pirkanniemi, K., "Recent Developments in Chelate Degradation," Environ. Technol., 22, 791-801(2001). https://doi.org/10.1080/095933322086180322
  6. Xu, X. and Thomson, N. R., "An Evaluation of the Green Chelant EDDS to Enhance the Stability of Hydrogen Peroxide in the presence of Aquifer Solids," Chemosphere, 69(5), 755-762(2007). https://doi.org/10.1016/j.chemosphere.2007.05.008
  7. Rastogi, A., Al-Abed, S. R. and Dionysiou, D. D., "Effect of Inorganic, Synthetic and Naturally Occurring Chelating Agents on Fe(II) Mediated Advanced Oxidation of Chlorophenols," Water Res., 43, 684-694(2009). https://doi.org/10.1016/j.watres.2008.10.045
  8. Wang, X. and Brusseau, M. L., "Effect of Pyrophosphate on the Dechlorination of Tetrachloroethene by the Fenton Reaction," Environ. Toxicol. Chem., 17(9), 1689-1694(1998). https://doi.org/10.1002/etc.5620170907
  9. Francis, A. J. and Dodge, C. J., "Remediation of Soils and Wastes Contaminated with Uranium and Toxic Metals," Environ. Sci. Technol., 32(24), 3993-3998(1998). https://doi.org/10.1021/es9803310
  10. Liang, C., Bruell, C. J., Marley, M. C. and Sperry, K. L., "Persulfate Oxidation for In Situ Remediation of TCE. II. Activated by Chelated Ferrous Ion," Chemosphere, 55, 1225-1233(2004b). https://doi.org/10.1016/j.chemosphere.2004.01.030
  11. Kim, J. W., "Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50(5), 879-884(2012). https://doi.org/10.9713/kcer.2012.50.5.879
  12. Venny, S. G. and Ng, H. K., "Inorganic Chelated Modified-Fenton Treatment of Polycyclic Aromatic Hydrocarbon (PAH)-Contaminated Soils," Chem. Eng. J., 180, 1-8(2012). https://doi.org/10.1016/j.cej.2011.10.082
  13. Kang, N. and Hua, I., "Enhanced Chemical Oxidation of Aromatic Hydrocarbons in Soil Systems, " Chemosphere., 61, 909-922(2005). https://doi.org/10.1016/j.chemosphere.2005.03.039
  14. Do, S. Y., Kwon, Y. J. and Kong, S. H., "Feasibility Study on an Oxidant-Injected Permeable Reactive Barrier to Treat BTEX Contamination: Adsorptive and Catalytic Characteristics of Waste-Reclaimed," J. Hazard. Mater., 191, 19-25(2011). https://doi.org/10.1016/j.jhazmat.2011.03.115
  15. Kong, S. H., Watts, R. J. and Choi, J. H., "Treatment of Petroleum-Contaminated Soils using Iron Mineral-Catalyzed Hydrogen Peroxide," Chemosphere, 37, 1473-1482(1998). https://doi.org/10.1016/S0045-6535(98)00137-4
  16. Kwan, W. P. and Voelker, B. M., "Decomposition of Hydrogen Peroxide and Organic Compounds in the presence of Dissolved Iron and Ferrihydrite," Environ. Sci. Tech., 36, 1467-1476(2002). https://doi.org/10.1021/es011109p
  17. Li, Y., Bachas, L. G. and Bhattacharyya, D., "Kinetics Studies of Trichlorophenol Destruction by Chelate-Based Fenton Reaction," Environ Eng Sci., 22, 756-771(2005). https://doi.org/10.1089/ees.2005.22.756
  18. Lindsey. M. E. and Tarr, M. A., "Inhibition of Hydroxyl Radical Reaction with Aromatics by Dissolved Natural Organic Matter," Environ. Sci. Technol., 34, 444-449(2000). https://doi.org/10.1021/es990457c
  19. Xue, X., Hanna, K., Despas, C., Wu, F. and Deng, N., "Effect of Chelating Agent on the Oxidation Rate of PCP in the Magnetite/$H_2O_2$ System at Neutral pH," J. Mol. Catal. A-Chem., 311, 29-35(2009). https://doi.org/10.1016/j.molcata.2009.06.016
  20. Katsumata, H., Kaneco, S., Suzuki, T., Ohta, K. and Yobiko, Y., "Photo-Fenton Degradation of Alachlor in the presence of Citrate Solution," J. Photoch. Photobio. A., 180, 38-45(2006). https://doi.org/10.1016/j.jphotochem.2005.09.013
  21. Hong, J., Lu, S., Zhang, C., Qi, S. and Wang, Y., "Removal of Rhodamine B under Visible Irradiation in the presence of $Fe^0$, $H_2O_2$, Citrate and Aeration at Circumneuteal pH," Chemosphere., 84, 1542-1547(2011). https://doi.org/10.1016/j.chemosphere.2011.05.056