DOI QR코드

DOI QR Code

미세 채널에서 칼슘이온 물질전달을 이용한 단분산성 알지네이트 하이드로젤 입자의 실시간 젤화

In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

  • Song, YoungShin (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 투고 : 2014.03.04
  • 심사 : 2014.05.14
  • 발행 : 2014.10.01

초록

본 논문은 가교제의 물질전달을 통한 실시간 생체고분자의 젤화 과정으로 단분산성을 갖는 구형의 알지네이트 하이드로젤을 미세유체 채널 내에서 제조하는 방법에 관한 연구이다. 먼저 미세유체 채널 내에서 단분산성 알지네이트 액적들을 형성하고 연속상에 분산된 염화칼슘 분자들의 물질전달 과정을 통해 실시간 젤화과정이 이루어지게 하여 알지네이트 하이드로젤 입자를 제조하였다. 이때, 미세유체 채널에서 형성되는 액적의 크기는 손쉽게 케필러리 수(capillary number)와 분산상의 유속 조절을 통하여 제어할 수 있다. 본 방법은 미세유체 채널 내에서 안정적인 액적을 형성할 수 있고 칼슘 가교제로 제조된 알지네이트 하이드로젤 입자들은 균일한 크기 분포를 가지며(C.V=2.71%) 유속, 점도, 및 계면장력의 조절을 통하여 $30{\mu}m$에서 $60{\mu}m$까지의 다양한 크기의 알지네이트 하이드로젤 입자를 제조할 수 있다. 본 논문에서 제시한 간단한 미세유체 접근방법을 통해 제조되는 단분산성을 갖는 알지네이트 하이드로젤 입자는 생체물질들을 손쉽게 함입(encapsulation)할 수 있으며 이는 식품, 화장품, 잉크 및 약물 등의 전달체로 활용이 가능하고 생체적합성이 뛰어나 세포이식 분야에도 활용될 가능성이 있다.

A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to $60{\mu}m$, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

키워드

참고문헌

  1. Desai, A., Kisaalita, W. S., Keith, C. and Wu, Z. Z., "Human Neuroblastoma (SH-SY5Y) Cell Culture and Differentiation in 3-D Collagen Hydrogels for Cell-based Biosensing," Biosens Bioelectron, 21(8), 1483-1492(2006). https://doi.org/10.1016/j.bios.2005.07.005
  2. Norton, L. W., Tegnell, E., Toporek, S. S. and Reichert, W. M., "In vitro Characterization of Vascular Endothelial Growth Factor and Dexamethasone Releasing Hydrogels for Implantable Probe Coatings," Biomaterials, 26(16), 3285-3297(2005). https://doi.org/10.1016/j.biomaterials.2004.07.069
  3. Frykman, S. and Srienc, F., "Quantitating Secretion Rates of Individual Cells: Design of Secretion Assays," Biotechnol Bioeng., 59(2), 214-226(1998). https://doi.org/10.1002/(SICI)1097-0290(19980720)59:2<214::AID-BIT9>3.0.CO;2-K
  4. Xu, B., Iwata, H., Miyamoto, M., Balamurugan, A. N., Murakami, Y., Cui, W., Imamura, M. and Inoue, K., "Functional Comparison of the Single-layer Agarose Microbeads and the Developed Three-layer Agarose Microbeads as the Bioartificial Pancreas: an in vitro Study," Cell Transplant, 10(4-5), 403-408(2001).
  5. Dove, A., "Cell-based Therapies Go Live," Nat Biotechnol., 20(4), 339-343(2002). https://doi.org/10.1038/nbt0402-339
  6. Borisov, S. M. and Wolfbeis, O. S., "Temperature-sensitive Europium(III) Probes and Their Use for Simultaneous Luminescent Sensing of Temperature and Oxygen," Anal Chem., 78(14), 5094-5101(2006). https://doi.org/10.1021/ac060311d
  7. Goponenko, A. V. and Asher, S. A., "Modeling of Stimulated Hydrogel Volume Changes in Photonic Crystal $Pb^{2+}$ Sensing Materials," J Am Chem Soc., 127(30), 10753-10759(2005). https://doi.org/10.1021/ja051456p
  8. Ben-Moshe, M., Alexeev, V. L. and Asher, S. A., "Fast Responsive Crystalline Colloidal Array Photonic Crystal Glucose Sensors," Anal Chem., 78(14), 5149-5157(2006). https://doi.org/10.1021/ac060643i
  9. Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R. and Lee, A. P., "Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles," J Am Chem Soc., 128(17), 5656-5658(2006). https://doi.org/10.1021/ja056641h
  10. Choi, C. H., Jung, J. H., Rhee, Y. W., Kim, D. P., Shim, S. E. and Lee, C. S., "Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device," Biomed Microdevices, 9(6), 855-862(2007). https://doi.org/10.1007/s10544-007-9098-7
  11. Silva, C. M., Ribeiro, A. J., Figueiredo, I. V., Goncalves, A. R. and Veiga, F., "Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability," Int J Pharm, 311(1-2), 1-10(2006). https://doi.org/10.1016/j.ijpharm.2005.10.050
  12. Sugiura, S., Oda, T., Aoyagi, Y., Matsuo, R., Enomoto, T., Matsumoto, K., Nakamura, T., Satake, M., Ochiai, A., Ohkohchi, N. and Nakajima, M., "Microfabricated Airflow Nozzle for Microencapsulation of Living Cells into 150 Micrometer Microcapsules," Biomed Microdevices, 9(1), 91-99(2007). https://doi.org/10.1007/s10544-006-9011-9
  13. Sugiura, S., Oda, T., Izumida, Y., Aoyagi, Y., Satake, M., Ochiai, A., Ohkohchi, N. and Nakajima, M., "Size Control of Calcium Alginate Beads Containing Living Cells Using Micro-nozzle Array," Biomaterials, 26(16), 3327-3331(2005). https://doi.org/10.1016/j.biomaterials.2004.08.029
  14. Halle, J. P., Leblond, F. A., Pariseau, J. F., Jutras, P., Brabant, M. J. and Lepage, Y., "Studies on Small (< 300 microns) Microcapsules: II-Parameters Governing the Production of Alginate Beads by High Voltage Electrostatic Pulses," Cell Transplant, 3(5), 365-372(1994). https://doi.org/10.1177/096368979400300503
  15. Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). https://doi.org/10.1038/nature05058
  16. Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using Two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28(3), 633-642(2011). https://doi.org/10.1007/s11814-010-0533-8
  17. Min, S. K., Lee, B. M., Hwang, J. H., Ha, S. H. and Shin, H. S., "Mathematical Analysis of Colonial Formation of Embryonic Stem Cells in Microfluidic System," Korean J. Chem. Eng., 29(3), 392-395(2012). https://doi.org/10.1007/s11814-011-0181-7
  18. Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-284(2013). https://doi.org/10.1016/j.bios.2013.03.031
  19. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48(5), 545-555(2010).
  20. Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C. and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors," J. Am. Chem. Soc., 127(22), 8058-8063(2005). https://doi.org/10.1021/ja042494w
  21. Zourob, M., Mohr, S., Mayes, A. G., Macaskill, A., Perez-Moral, N., Fielden, P. R. and Goddard, N. J., "A Micro-reactor for Preparing Uniform Molecularly Imprinted Polymer Beads," Lab on a Chip., 6(2), 296-301(2006). https://doi.org/10.1039/b513195b
  22. Tan, W. H. and Takeuchi, S., "Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation," Adv. Mater., 19(18), 2696(2007). https://doi.org/10.1002/adma.200700433
  23. Huang, K. S., Lai, T. H. and Lin, Y. C., "Manipulating the Generation of Ca-alginate Microspheres Using Microfluidic Channels As a Carrier of Gold Nanoparticles," Lab on a Chip., 6(7), 954-957(2006). https://doi.org/10.1039/b606424h
  24. Agarwal, P., Zhao, S. T., Bielecki, P., Rao, W., Choi, J. K., Zhao, Y., Yu, J. H., Zhang, W. J. and He, X. M., "One-step Microfluidic Generation of Pre-hatching Embryo-like Core-shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells," Lab on a Chip, 13(23), 4525-4533(2013). https://doi.org/10.1039/c3lc50678a
  25. Zhang, H., Tumarkin, E., Peerani, R., Nie, Z., Sullan, R. M. A., Walker, G. C. and Kumacheva, E., "Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology," J. Am. Chem. Soc., 128(37), 12205-12210(2006). https://doi.org/10.1021/ja0635682
  26. Dreyfus, R., Tabeling, P. and Willaime, H., "Ordered and Disordered Patterns in Two-phase Flows in Microchannels," Phys. Rev. Lett., 90(14), (2003).
  27. Xu, J. H., Luo, G. S., Li, S. W. and Chen, G. G., "Shear Force Induced Monodisperse Droplet Formation in a Microfluidic Device by Controlling Wetting Properties," Lab on a Chip, 6(1), 131-136(2006). https://doi.org/10.1039/b509939k
  28. Choi, C. H., Jung, J. H. and Lee, C. S., "in situ Microfluidic Method for the Generation of Uniform PEG Microfiber," Korean Chem. Eng. Res., 48(4), 470-474(2010).
  29. Nie, Z. H., Seo, M. S., Xu, S. Q., Lewis, P. C., Mok, M., Kumacheva, E., Whitesides, G. M., Garstecki, P. and Stone, H. A., "Emulsification in a Microfluidic Flow-focusing Device: Effect of the Viscosities of the Liquids," Microfluidics and Nanofluidics, 5(5), 585-594(2008). https://doi.org/10.1007/s10404-008-0271-y
  30. Yobas, L., Martens, S., Ong, W. L. and Ranganathan, N., "Highperformance Flow-focusing Geometry for Spontaneous Generation of Monodispersed Droplets," Lab Chip, 6(8), 1073-9(2006). https://doi.org/10.1039/b602240e
  31. Zhou, C., Yue, P. and Feng, J. J., "Formation of Simple and Compound Drops in Microfluidic Devices," Physics of Fluids, 18(092105), 1-14(2006).
  32. Peng, L., Yang, M., Guo, S. S., Liu, W. and Zhao, X. Z., "The Effect of Interfacial Tension on Droplet Formation in Flow-focusing Microfluidic Device," Biomed Microdevices, 13(3), 559-64(2011). https://doi.org/10.1007/s10544-011-9526-6

피인용 문헌

  1. Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.472
  2. Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26829-z
  3. 미세유체 장치에서 수거 방법에 따른 펙틴 하이드로겔 입자의 특성 비교 vol.53, pp.6, 2014, https://doi.org/10.9713/kcer.2015.53.6.740
  4. 미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조 vol.23, pp.3, 2014, https://doi.org/10.7464/ksct.2017.23.3.270
  5. Microfluidics를 이용한 화장품 에멀젼 캡슐레이션에 대한 연구 vol.22, pp.1, 2014, https://doi.org/10.5762/kais.2021.22.1.81
  6. Crosslinking Strategies for the Microfluidic Production of Microgels vol.26, pp.12, 2014, https://doi.org/10.3390/molecules26123752