Comparing Construct and Predictive Validities of the Measurement of Children's Approximate Number Acuity Depending on Numerosity Comparison Task Format

수량 비교 과제의 형식에 따른 아동의 수 민감도 측정치의 구성 타당도 및 예측 타당도 비교

  • Park, Yunji (Department of Psychology, Chung-Ang University) ;
  • Cho, Soohyun (Department of Psychology, Chung-Ang University)
  • Received : 2014.04.15
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

Approximate number sense(hereafter, ANS) is the ability to compare and operate upon numerosity information. The numerosity comparison task is used to measure ANS. However, there is considerable variance among previous reports of ANS acuity which may be related to different task formats used. Here, we aim to investigate whether the format of the numerosity comparison task influences measurements of ANS acuity. We compared two task formats; 1) an intermixed format presenting two intermixed arrays of black and white dots, and 2) a side-by-side format showing two arrays of dots side by side. The intermixed format likely makes additional demands on general cognitive resources for inhibitory control, selective attention, or visuospatial working memory. The performance on the intermixed format was significantly lower than that of the side-by-side format resulting in an underestimation of ANS acuity compared to the expected trajectory of ANS development. In addition, the ANS acuity measured from only the side-by-side format was correlated with children's mathematical achievement and age. Our results demonstrate that measurement of ANS from the side-by-side format has higher construct and predictive validity compared to that of the intermixed format.

대략적 수 민감도(approximate number sense)란 수량에 대하여 대략적인 비교와 덧셈 등의 기본적인 조작을 할 수 있는 능력을 말한다. 선행 연구들은 수 민감도를 측정하기 위해 두 개의 점 집합의 수량을 비교하는 과제를 사용하였다. 선행 연구들이 보고한 수 민감도 수치에는 상당한 편차가 존재하는데 이는 수량 과제 비교의 형식의 차이에 기인할 가능성이 크다. 본 연구는 아동의 수 민감도 측정에 더 적절한 수량 비교 과제의 형식에 대해 알아보았다. 선행 연구에서 가장 흔히 사용된 수량 비교 과제는 서로 다른 색깔의 두 점 집합이 서로 섞여서 제시되는 혼재형(intermixed) 형식과 두 점 집합이 나란히 제시되는 병렬형(side-by-side) 형식이었다. 혼재형 수량 비교 과제는 각 색깔 집합의 수량을 추정할 때, 억제 조절 능력, 선택적 주의 및 시공간 작업 기억 등이 추가적으로 요구될 수 있다. 수량 변별 외에 추가적인 인지 처리를 요구하는 과제는 수량 비교 수행의 개인차를 정확하게 측정하지 못할 가능성이 크며(구성 타당도의 저하), 수량 변별 능력이 마땅히 예측할 것으로 기대되는 관련 변인과의 상관관계도 저조할 가능성이 있다(예측 타당도의 저하). 본 연구는 초등학교 학생들을 대상으로 수량 비교 과제의 형식에 따른 수 민감도 측정치의 차이를 관찰하고 수학 성취도와의 상관관계를 비교하였다. 연구 결과, 혼재 형식 수량 비교 과제를 통한 수 민감도는 병렬 형식에서보다 현저하게 낮았으며, 선행 연구에서 예측한 수 민감도 발달 추이를 고려할 때 지나치게 과소 추정된 값이었다. 나아가 두 가지 제시 형식에 의해 측정된 수 민감도와 수학 성취도와의 상관관계를 비교하였는데, 혼재 형식 수량 비교 과제를 통해 산출된 수 민감도는 수학 성취도와 상관관계를 보이지 않아 예측타당도 역시 낮다고 판단된다. 결론적으로, 본 연구를 통해 아동을 대상으로 하여 수 민감도 측정 시 혼재형식보다 병렬 형식 수량 비교 과제를 사용하는 것이 구성 타당도와 예측 타당도가 더 높다고 판단된다.

Keywords

References

  1. Dehaene, S. (2011). The number sense: How the mind creates mathematics: OUP USA.
  2. Dehaene, S. (2001). Precis of the number sense. Mind & Language, 16(1), 16-36. https://doi.org/10.1111/1468-0017.00154
  3. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current opinion in neurobiology, 14(2), 218-224. https://doi.org/10.1016/j.conb.2004.03.008
  4. Brannon, E. M., Jordan, K. E., & Jones, S. M. (2010). Behavioral signatures of numerical cognition. Primate Neuroethology. Oxford University Press, USA, 144-159.
  5. Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282(5389), 746-749. https://doi.org/10.1126/science.282.5389.746
  6. Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382-10385. https://doi.org/10.1073/pnas.0812142106
  7. Jordan, K., Brannon, E. M., Logothetis, N. K., & Ghazanfar, A. A. (2005). Monkeys match the number of voices they hear to the number of faces they see. Current Biology, 15(11), 1034-1038. https://doi.org/10.1016/j.cub.2005.04.056
  8. Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. https://doi.org/10.1126/science.1102085
  9. Xu, F. and Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition 74, B1-B11. https://doi.org/10.1016/S0010-0277(99)00066-9
  10. Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental science, 13(6), 900-906. https://doi.org/10.1111/j.1467-7687.2009.00948.x
  11. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the "number sense": The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457. https://doi.org/10.1037/a0012682
  12. Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. https://doi.org/10.1073/pnas.1200196109
  13. Goldstein, E. B. (2010). Sensation and perception: Wadsworth Publishing Company.
  14. Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. https://doi.org/10.1038/nature07246
  15. Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737-18742. https://doi.org/10.1073/pnas.1207212109
  16. Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability?. Learning and Individual Differences, 25, 126-133. https://doi.org/10.1016/j.lindif.2013.02.001
  17. Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576. https://doi.org/10.1111/j.1467-9280.2006.01746.x
  18. Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141, 373-379. https://doi.org/10.1016/j.actpsy.2012.09.009
  19. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300. https://doi.org/10.1111/j.1467-7687.2011.01080.x
  20. Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229. https://doi.org/10.3758/s13423-011-0154-1
  21. Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19(11), 1845-1853. https://doi.org/10.1162/jocn.2007.19.11.1845
  22. Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta psychologica, 140(1), 50-57. https://doi.org/10.1016/j.actpsy.2012.02.008
  23. Baddeley, A. D. (1986). Working memory. Oxford, England: Oxford University Press.
  24. Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual Differences in Inhibitory Control, Not Non-Verbal Number Acuity, Correlate with Mathematics Achievement. PloS one, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374
  25. Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low‐income homes: contributions of inhibitory control. Developmental science, 16(1), 136-148. https://doi.org/10.1111/desc.12013
  26. Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in cognitive sciences, 13(2), 83-91. https://doi.org/10.1016/j.tics.2008.11.007
  27. van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119. https://doi.org/10.1016/j.cognition.2010.12.013
  28. Tosto, M. G., Petrill, S. A., Halberda, J., Trzaskowski, M., Tikhomirova, T. N., Bogdanova, O. Y., ... & Kovas, Y. (2014). Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence, 43, 35-46. https://doi.org/10.1016/j.intell.2013.12.007
  29. Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19(11), 1845-1853. https://doi.org/10.1162/jocn.2007.19.11.1845
  30. 성태재 (1995). 타당도와 신뢰도. 학지사, 서울.
  31. DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: effects of feedback and training. Frontiers in Human Neuroscience, 6.
  32. Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599-19604. https://doi.org/10.1073/pnas.0609485103
  33. Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child development, 82(4), 1224-1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x
  34. Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. https://doi.org/10.1016/j.cognition.2010.03.012
  35. Leibovich, T., & Henik, A. (2013). Comparing performance in discrete and continuous comparison tasks. The Quarterly Journal of Experimental Psychology, 67(5), 899-917.