Browse > Article

Comparing Construct and Predictive Validities of the Measurement of Children's Approximate Number Acuity Depending on Numerosity Comparison Task Format  

Park, Yunji (Department of Psychology, Chung-Ang University)
Cho, Soohyun (Department of Psychology, Chung-Ang University)
Publication Information
Korean Journal of Cognitive Science / v.25, no.2, 2014 , pp. 159-187 More about this Journal
Abstract
Approximate number sense(hereafter, ANS) is the ability to compare and operate upon numerosity information. The numerosity comparison task is used to measure ANS. However, there is considerable variance among previous reports of ANS acuity which may be related to different task formats used. Here, we aim to investigate whether the format of the numerosity comparison task influences measurements of ANS acuity. We compared two task formats; 1) an intermixed format presenting two intermixed arrays of black and white dots, and 2) a side-by-side format showing two arrays of dots side by side. The intermixed format likely makes additional demands on general cognitive resources for inhibitory control, selective attention, or visuospatial working memory. The performance on the intermixed format was significantly lower than that of the side-by-side format resulting in an underestimation of ANS acuity compared to the expected trajectory of ANS development. In addition, the ANS acuity measured from only the side-by-side format was correlated with children's mathematical achievement and age. Our results demonstrate that measurement of ANS from the side-by-side format has higher construct and predictive validity compared to that of the intermixed format.
Keywords
Approximate number sense; numerosity comparison task; task format; inhibitory control; mathematical achievement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low‐income homes: contributions of inhibitory control. Developmental science, 16(1), 136-148.   DOI
2 Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in cognitive sciences, 13(2), 83-91.   DOI
3 van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119.   DOI
4 Tosto, M. G., Petrill, S. A., Halberda, J., Trzaskowski, M., Tikhomirova, T. N., Bogdanova, O. Y., ... & Kovas, Y. (2014). Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence, 43, 35-46.   DOI
5 Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19(11), 1845-1853.   DOI
6 성태재 (1995). 타당도와 신뢰도. 학지사, 서울.
7 DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: effects of feedback and training. Frontiers in Human Neuroscience, 6.
8 Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599-19604.   DOI
9 Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child development, 82(4), 1224-1237.   DOI
10 Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41.   DOI
11 Leibovich, T., & Henik, A. (2013). Comparing performance in discrete and continuous comparison tasks. The Quarterly Journal of Experimental Psychology, 67(5), 899-917.
12 Dehaene, S. (2011). The number sense: How the mind creates mathematics: OUP USA.
13 Dehaene, S. (2001). Precis of the number sense. Mind & Language, 16(1), 16-36.   DOI
14 Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current opinion in neurobiology, 14(2), 218-224.   DOI   ScienceOn
15 Jordan, K., Brannon, E. M., Logothetis, N. K., & Ghazanfar, A. A. (2005). Monkeys match the number of voices they hear to the number of faces they see. Current Biology, 15(11), 1034-1038.   DOI
16 Brannon, E. M., Jordan, K. E., & Jones, S. M. (2010). Behavioral signatures of numerical cognition. Primate Neuroethology. Oxford University Press, USA, 144-159.
17 Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282(5389), 746-749.   DOI
18 Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382-10385.   DOI
19 Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503.   DOI
20 Xu, F. and Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition 74, B1-B11.   DOI
21 Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental science, 13(6), 900-906.   DOI
22 Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the "number sense": The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457.   DOI
23 Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120.   DOI
24 Goldstein, E. B. (2010). Sensation and perception: Wadsworth Publishing Company.
25 Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.   DOI
26 Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141, 373-379.   DOI
27 Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737-18742.   DOI
28 Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability?. Learning and Individual Differences, 25, 126-133.   DOI
29 Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576.   DOI
30 Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300.   DOI
31 Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229.   DOI
32 Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19(11), 1845-1853.   DOI
33 Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta psychologica, 140(1), 50-57.   DOI
34 Baddeley, A. D. (1986). Working memory. Oxford, England: Oxford University Press.
35 Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual Differences in Inhibitory Control, Not Non-Verbal Number Acuity, Correlate with Mathematics Achievement. PloS one, 8(6), e67374.   DOI