DOI QR코드

DOI QR Code

Characterization of CTX-M-14- and CTX-M-15-Producing Escherichia coli and Klebsiella pneumoniae Isolates from Urine Specimens in a Tertiary-Care Hospital

  • Kim, Semi (Department of Laboratory Medicine, College of Medicine, Chungnam National University) ;
  • Sung, Ji Youn (Department of Biomedical Laboratory Science, Far East University) ;
  • Cho, Hye Hyun (Department of Biomedical Laboratory Science, Jeonju Kijeon College) ;
  • Kwon, Kye Chul (Department of Laboratory Medicine, College of Medicine, Chungnam National University) ;
  • Koo, Sun Hoe (Department of Laboratory Medicine, College of Medicine, Chungnam National University)
  • Received : 2013.06.13
  • Accepted : 2014.03.13
  • Published : 2014.06.28

Abstract

This study aimed to characterize CTX-M producers of urinary E. coli and K. pneumoniae isolates and to determine the prevalence of plasmid-mediated antimicrobial resistance genes among them. Minimum inhibitory concentrations (MICs) were determined, and PCR and sequencing were performed. Among the 42 (82.3%) E. coli and 24 (77.4%) K. pneumoniae isolates containing $bla_{CTX-M}$, $bla_{CTX-M-14}$ and $bla_{CTX-M-15}$ were detected in 23 and 19 E. coli isolates, respectively, and in 7 and 17 K. pneumoniae isolates, respectively. CTX-M producers of urinary E. coli and K. pneumoniae were resistant to multiple antibiotics and contained other antimicrobial resistance genes. CTX-M-15 producers contained more antimicrobial resistance genes than did CTX-M-14 producers.

Keywords

References

  1. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. 2007. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 60: 394-397. https://doi.org/10.1093/jac/dkm204
  2. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. M100-S16. Wayne, Pensylvania: CLSI, 2006.
  3. Duan H, Chai T, Liu J, Zhang X, Qi C, Gao J, et al. 2009. Source identification of airborne Escherichia coli o f swine house surroundings using ERIC-PCR and REP-PCR. Environ. Res. 109: 511-517. https://doi.org/10.1016/j.envres.2009.02.014
  4. Dhanji H, Doumith M, Rooney PJ, O'Leary MC, Loughrey AC, Hope R, et al. 2011. Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum beta-lactamases in nursing homes in Belfast, UK. J. Antimicrob. Chemother. 66: 297-303. https://doi.org/10.1093/jac/dkq463
  5. Jeong HS, Bae IK, Shin JH, Jung HJ, Kim SH, Lee JY, et al. 2011. Prevalence of plasmid-mediated quinolone resistance and its association with extended-spectrum beta-lactamase and AmpC beta-lactamase in Enterobacteriaceae. Korean J. Lab. Med. 31: 257-264. https://doi.org/10.3343/kjlm.2011.31.4.257
  6. Kang HY, Kim J, Seol SY, Lee YC, Lee JC, Cho DT. 2009. Characterization of conjugative plasmids carrying antibiotic resistance genes encoding 16S rRNA methylase, extendedspectrum beta-lactamase, and/or plasmid-mediated AmpC beta-lactamase. J. Microbiol. 47: 68-75. https://doi.org/10.1007/s12275-008-0158-3
  7. Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. 2009. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53: 639-645. https://doi.org/10.1128/AAC.01051-08
  8. Kim J, Bae IK, Jeong SH, Chang CL, Lee CH, Lee K. 2011. Characterization of IncF plasmids carrying the blaCTX-M-14 gene in clinical isolates of Escherichia coli from Korea. J. Antimicrob. Chemother. 66: 1263-1268. https://doi.org/10.1093/jac/dkr106
  9. Kim MH, Lee HJ, Park KS, Suh JT. 2010. Molecular characteristics of extended spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae and the prevalence of qnr in extended spectrum beta-lactamase isolates in a tertiary care hospital in Korea. Yonsei Med. J. 51: 768-774. https://doi.org/10.3349/ymj.2010.51.5.768
  10. Kim MH, Sung JY, Park JW, Kwon GC, Koo SH. 2007. Coproduction of qnrB and armA from extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Korean J. Lab. Med. 27: 428-436. https://doi.org/10.3343/kjlm.2007.27.6.428
  11. Ko KS, Lee MY, Song JH, Lee H, Jung DS, Jung SI, et al. 2008. Prevalence and characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae isolated in Korean hospitals. Diagn. Microbiol. Infect. Dis. 61: 453-459. https://doi.org/10.1016/j.diagmicrobio.2008.03.005
  12. Lewis JS 2nd, Herrera M, Wickes B, Patterson JE, Jorgensen JH. 2007. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a US health care system. Antimicrob. Agents Chemother. 51: 4015-4021. https://doi.org/10.1128/AAC.00576-07
  13. Li XM, Jang SJ, Bae IK, Park G, Kim YS, Shin JH, et al. 2010. Frequency of extended-spectrum ${\beta}$-lactamase (ESBL) and AmpC $\beta$-lactamase genes in Escherichia coli and Klebsiella pneumoniae over a three-year period in a University Hospital in Korea. Korean J. Lab. Med. 30: 616-623. https://doi.org/10.3343/kjlm.2010.30.6.616
  14. Park SD, Uh Y, Lee G, Lim K, Kim JB, Jeong SH. 2010. Prevalence and resistance patterns of extended-spectrum and AmpC $\beta$-lactamase in Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Salmonella serovar Stanley in a Korean tertiary hospital. APMIS 118: 801-808. https://doi.org/10.1111/j.1600-0463.2010.02663.x
  15. Park SH, Byun JH, Choi SM, Lee DG, Kim SH, Kwon JC, et al. 2012. Molecular epidemiology of extended-spectrum $\beta$-lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15. BMC Infect. Dis. 12: 149. https://doi.org/10.1186/1471-2334-12-149
  16. Park Y, Kang HK, Bae IK, Kim J, Kim JS, Uh Y, et al. 2009. Prevalence of the extended-spectrum beta-lactamase and qnr genes in clinical isolates of Escherichia coli. Korean J. Lab. Med. 29: 218-223. https://doi.org/10.3343/kjlm.2009.29.3.218
  17. Paterson DL. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 119: S20-S28; discussion S62- S70.
  18. Perez-Perez FJ, Hanson ND. 2002. Detection of plasmidmediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153-2162. https://doi.org/10.1128/JCM.40.6.2153-2162.2002
  19. Piatti G, Mannini A, Balistreri M, Schito AM. 2008. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J. Clin. Microbiol. 46: 480-487. https://doi.org/10.1128/JCM.01488-07
  20. Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
  21. Rossolini GM, D'Andrea MM, Mugnaioli C. 2008. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 14(Suppl 1): 33-41. https://doi.org/10.1111/j.1469-0691.2007.01867.x
  22. Ruiz E, Saenz Y, Zarazaga M, Rocha-Gracia R, Martinez- Martinez L, Arlet G, Torres C. 2012. qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J. Antimicrob. Chemother. 67: 886-897.
  23. Shin J, Kim DH, Ko KS. 2011. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J. Infect. 63: 39-47. https://doi.org/10.1016/j.jinf.2011.05.003
  24. Seo MR, Park YS, Pai H. 2010. Characteristics of plasmidmediated quinolone resistance genes in extended-spectrum cephalosporin-resistant isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Chemotherapy 56: 46-53. https://doi.org/10.1159/000290972
  25. Song S, Lee EY, Koh EM, Ha HS, Jeong HJ, Bae IK, Jeong SH. 2009. Antibiotic resistance mechanisms of Escherichia coli isolates from urinary specimens. Korean J. Lab. Med. 29: 17-23. https://doi.org/10.3343/kjlm.2009.29.1.17
  26. Sung JY, Koo SH, Kwon KC, Park JW, Ko CS, Shin SY, Song JH. 2009. Characterization o f class 1 integrons in metallo-$\beta$- lactamase-producing Pseudomonas aeruginosa. Korean J. Clin. Microbiol. 12: 17-23. https://doi.org/10.5145/KJCM.2009.12.1.17
  27. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. 2010. High prevalence of extended-spectrum beta-lactamases and plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn. Microbiol. Infect. Dis. 67: 261-265. https://doi.org/10.1016/j.diagmicrobio.2010.02.012
  28. Yum JH, Kim S, Lee H, Yong D, Lee K, Cho SN, Chong Y. 2005. Emergence and wide dissemination of CTX-M-type ESBLs, and CMY-2- and DHA-1-type AmpC beta-lactamases in Korean respiratory isolates of Klebsiella pneumoniae. J. Korean Med. Sci. 20: 961-965. https://doi.org/10.3346/jkms.2005.20.6.961

Cited by

  1. Multidrug-resistant Escherichia coli in Asia: epidemiology and management vol.13, pp.5, 2014, https://doi.org/10.1586/14787210.2015.1028365
  2. 충청지역에서 분리된 사람 유래 대장균 및 닭 유래 대장균의 항균제 내성 및 MLST를 이용한 유전형의 분포 조사 vol.47, pp.2, 2014, https://doi.org/10.15324/kjcls.2015.47.2.71
  3. 경북지역의 닭으로부터 CTX-M-14 생성 장내세균 분리동정 vol.48, pp.2, 2014, https://doi.org/10.15324/kjcls.2016.48.2.118
  4. Characteristics of the Molecular Epidemiology of CTX-M-Producing Escherichia coli Isolated from a Tertiary Hospital in Daejeon, Korea vol.26, pp.9, 2016, https://doi.org/10.4014/jmb.1603.03063
  5. Prevalence of AmpC and Extended-Spectrum Beta-Lactamase Genes in Klebsiella pneumoniae and Escherichia coli Isolates vol.22, pp.2, 2014, https://doi.org/10.5812/ircmj.96842