References
- Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. 2007. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 60: 394-397. https://doi.org/10.1093/jac/dkm204
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. M100-S16. Wayne, Pensylvania: CLSI, 2006.
- Duan H, Chai T, Liu J, Zhang X, Qi C, Gao J, et al. 2009. Source identification of airborne Escherichia coli o f swine house surroundings using ERIC-PCR and REP-PCR. Environ. Res. 109: 511-517. https://doi.org/10.1016/j.envres.2009.02.014
- Dhanji H, Doumith M, Rooney PJ, O'Leary MC, Loughrey AC, Hope R, et al. 2011. Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum beta-lactamases in nursing homes in Belfast, UK. J. Antimicrob. Chemother. 66: 297-303. https://doi.org/10.1093/jac/dkq463
- Jeong HS, Bae IK, Shin JH, Jung HJ, Kim SH, Lee JY, et al. 2011. Prevalence of plasmid-mediated quinolone resistance and its association with extended-spectrum beta-lactamase and AmpC beta-lactamase in Enterobacteriaceae. Korean J. Lab. Med. 31: 257-264. https://doi.org/10.3343/kjlm.2011.31.4.257
- Kang HY, Kim J, Seol SY, Lee YC, Lee JC, Cho DT. 2009. Characterization of conjugative plasmids carrying antibiotic resistance genes encoding 16S rRNA methylase, extendedspectrum beta-lactamase, and/or plasmid-mediated AmpC beta-lactamase. J. Microbiol. 47: 68-75. https://doi.org/10.1007/s12275-008-0158-3
- Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. 2009. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53: 639-645. https://doi.org/10.1128/AAC.01051-08
- Kim J, Bae IK, Jeong SH, Chang CL, Lee CH, Lee K. 2011. Characterization of IncF plasmids carrying the blaCTX-M-14 gene in clinical isolates of Escherichia coli from Korea. J. Antimicrob. Chemother. 66: 1263-1268. https://doi.org/10.1093/jac/dkr106
- Kim MH, Lee HJ, Park KS, Suh JT. 2010. Molecular characteristics of extended spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae and the prevalence of qnr in extended spectrum beta-lactamase isolates in a tertiary care hospital in Korea. Yonsei Med. J. 51: 768-774. https://doi.org/10.3349/ymj.2010.51.5.768
- Kim MH, Sung JY, Park JW, Kwon GC, Koo SH. 2007. Coproduction of qnrB and armA from extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Korean J. Lab. Med. 27: 428-436. https://doi.org/10.3343/kjlm.2007.27.6.428
- Ko KS, Lee MY, Song JH, Lee H, Jung DS, Jung SI, et al. 2008. Prevalence and characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae isolated in Korean hospitals. Diagn. Microbiol. Infect. Dis. 61: 453-459. https://doi.org/10.1016/j.diagmicrobio.2008.03.005
- Lewis JS 2nd, Herrera M, Wickes B, Patterson JE, Jorgensen JH. 2007. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a US health care system. Antimicrob. Agents Chemother. 51: 4015-4021. https://doi.org/10.1128/AAC.00576-07
-
Li XM, Jang SJ, Bae IK, Park G, Kim YS, Shin JH, et al. 2010. Frequency of extended-spectrum
${\beta}$ -lactamase (ESBL) and AmpC$\beta$ -lactamase genes in Escherichia coli and Klebsiella pneumoniae over a three-year period in a University Hospital in Korea. Korean J. Lab. Med. 30: 616-623. https://doi.org/10.3343/kjlm.2010.30.6.616 -
Park SD, Uh Y, Lee G, Lim K, Kim JB, Jeong SH. 2010. Prevalence and resistance patterns of extended-spectrum and AmpC
$\beta$ -lactamase in Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Salmonella serovar Stanley in a Korean tertiary hospital. APMIS 118: 801-808. https://doi.org/10.1111/j.1600-0463.2010.02663.x -
Park SH, Byun JH, Choi SM, Lee DG, Kim SH, Kwon JC, et al. 2012. Molecular epidemiology of extended-spectrum
$\beta$ -lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15. BMC Infect. Dis. 12: 149. https://doi.org/10.1186/1471-2334-12-149 - Park Y, Kang HK, Bae IK, Kim J, Kim JS, Uh Y, et al. 2009. Prevalence of the extended-spectrum beta-lactamase and qnr genes in clinical isolates of Escherichia coli. Korean J. Lab. Med. 29: 218-223. https://doi.org/10.3343/kjlm.2009.29.3.218
- Paterson DL. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 119: S20-S28; discussion S62- S70.
- Perez-Perez FJ, Hanson ND. 2002. Detection of plasmidmediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153-2162. https://doi.org/10.1128/JCM.40.6.2153-2162.2002
- Piatti G, Mannini A, Balistreri M, Schito AM. 2008. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J. Clin. Microbiol. 46: 480-487. https://doi.org/10.1128/JCM.01488-07
- Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
- Rossolini GM, D'Andrea MM, Mugnaioli C. 2008. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 14(Suppl 1): 33-41. https://doi.org/10.1111/j.1469-0691.2007.01867.x
- Ruiz E, Saenz Y, Zarazaga M, Rocha-Gracia R, Martinez- Martinez L, Arlet G, Torres C. 2012. qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J. Antimicrob. Chemother. 67: 886-897.
- Shin J, Kim DH, Ko KS. 2011. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J. Infect. 63: 39-47. https://doi.org/10.1016/j.jinf.2011.05.003
- Seo MR, Park YS, Pai H. 2010. Characteristics of plasmidmediated quinolone resistance genes in extended-spectrum cephalosporin-resistant isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Chemotherapy 56: 46-53. https://doi.org/10.1159/000290972
- Song S, Lee EY, Koh EM, Ha HS, Jeong HJ, Bae IK, Jeong SH. 2009. Antibiotic resistance mechanisms of Escherichia coli isolates from urinary specimens. Korean J. Lab. Med. 29: 17-23. https://doi.org/10.3343/kjlm.2009.29.1.17
-
Sung JY, Koo SH, Kwon KC, Park JW, Ko CS, Shin SY, Song JH. 2009. Characterization o f class 1 integrons in metallo-
$\beta$ - lactamase-producing Pseudomonas aeruginosa. Korean J. Clin. Microbiol. 12: 17-23. https://doi.org/10.5145/KJCM.2009.12.1.17 - Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. 2010. High prevalence of extended-spectrum beta-lactamases and plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn. Microbiol. Infect. Dis. 67: 261-265. https://doi.org/10.1016/j.diagmicrobio.2010.02.012
- Yum JH, Kim S, Lee H, Yong D, Lee K, Cho SN, Chong Y. 2005. Emergence and wide dissemination of CTX-M-type ESBLs, and CMY-2- and DHA-1-type AmpC beta-lactamases in Korean respiratory isolates of Klebsiella pneumoniae. J. Korean Med. Sci. 20: 961-965. https://doi.org/10.3346/jkms.2005.20.6.961
Cited by
- Multidrug-resistant Escherichia coli in Asia: epidemiology and management vol.13, pp.5, 2014, https://doi.org/10.1586/14787210.2015.1028365
- 충청지역에서 분리된 사람 유래 대장균 및 닭 유래 대장균의 항균제 내성 및 MLST를 이용한 유전형의 분포 조사 vol.47, pp.2, 2014, https://doi.org/10.15324/kjcls.2015.47.2.71
- 경북지역의 닭으로부터 CTX-M-14 생성 장내세균 분리동정 vol.48, pp.2, 2014, https://doi.org/10.15324/kjcls.2016.48.2.118
- Characteristics of the Molecular Epidemiology of CTX-M-Producing Escherichia coli Isolated from a Tertiary Hospital in Daejeon, Korea vol.26, pp.9, 2016, https://doi.org/10.4014/jmb.1603.03063
- Prevalence of AmpC and Extended-Spectrum Beta-Lactamase Genes in Klebsiella pneumoniae and Escherichia coli Isolates vol.22, pp.2, 2014, https://doi.org/10.5812/ircmj.96842