References
- Robinson, D. S., Q. Hamid, S. Ying, A. Tsicopoulos, J. Barkans, A. M. Bentley, C. Corrigan, S. R. Durham, and A. B. Kay. 1992. Predominant Th2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326: 298-304. https://doi.org/10.1056/NEJM199201303260504
- Kim, H. Y., R. H. DeKruyff, and D. T. Umetsu. 2010. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat. Immunol. 11: 577-584. https://doi.org/10.1038/ni.1892
- Corren, J., R. F. Lemanske, N. A. Hanania, P. E. Korenblat, M. V. Parsey, J. R. Arron, J. M. Harris, H. Scheerens, L. C. Wu, Z. Su, S. Mosesova, M. D. Eisner, S. P. Bohen, and J. G. Matthews. 2011. Lebrikizumab Treatment in Adults with Asthma. N. Engl. J. Med. 365: 1038-1098.
- Johnston, R. A., M. Zhu, Y. M. Rivera-Sanchez, F. L. Lu, T. A. Theman, L. Flynt, and S. A. Shore. 2007. Allergic airway responses in obese mice. Am. J. Respir. Crit. Care Med. 176: 650-658. https://doi.org/10.1164/rccm.200702-323OC
- Pichavant, M., S. Goya, E. H. Meyer, R. A. Johnston, H. Y. Kim, P. Matangkasombut, M. Zhu, Y. Iwakura, P. B. Savage, R. H. Dekruyff, S. A. Shore, and D. T. Umetsu. 2008. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J. Exp. Med. 205: 385-393. https://doi.org/10.1084/jem.20071507
- Kim, E. Y., J. T. Battaile, A. C. Patel, Y. You, E. Agapov, M. H. Grayson, L. A. Benoit, D. E. Byers, Y. Alevy, J. Tucker, S. Swanson, R. Tidwell, J. W. Tyner, J. D. Morton, M Castro, D. Polineni, G. A. Patterson, R. A. Schwendener, J. D. Allard, G. Peltz, and M. J. Holtzman. 2008. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14: 633-640. https://doi.org/10.1038/nm1770
- Wright, R. J. 2005. Stress and atopic disorders. J. Allergy Clin. Immunol. 116: 1301-1306. https://doi.org/10.1016/j.jaci.2005.09.050
- Moro, K., T. Yamada, M. Tanabe, T. Takeuchi, T. Ikawa, H. Kawamoto, J. Furusawa, M. Ohtani, H. Fujii, and S. Koyasu. 2010. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463: 540-544. https://doi.org/10.1038/nature08636
- Neill, D. R., S. H. Wong, A. Bellosi, R. J. Flynn, M. Daly, T. K. Langford, C. Bucks, C. M. Kane, P. G. Fallon, R. Pannell, H. E. Jolin, and A. N. McKenzie. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464: 1367-1370. https://doi.org/10.1038/nature08900
- Buonocore, S., P. P. Ahern, H. H. Uhlig, I. I. Ivanov, D. R. Littman, K. J. Maloy, and F. Powrie. 2010. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464: 1371-1375. https://doi.org/10.1038/nature08949
- Chang, Y. J., H. Y. Kim, L. A. Albacker, N. Baumgarth, A. N. McKenzie, D. E. Smith, R. H. Dekruyff, and D. T. Umetsu. 2011. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12: 631-638. https://doi.org/10.1038/ni.2045
- Kim, H. Y., H. J. Lee, Y. J. Chang, M. Pichavant, S. A. Shore, K. A. Fitzgerald, Y. Iwakura, E. Israel, K. Bolger, J. Faul, R. H. DeKruyff, and D. T. Umetsu. 2014. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20: 54-61.
- Monticelli, L. A., G. F. Sonnenberg, M. C. Abt, T. Alenghat, C. G. Ziegler, T. A. Doering, J. M. Angelosanto, B. J. Laidlaw, C. Y. Yang, T. Sathaliyawala, M. Kubota, D. Turner, J. M. Diamond, A. W. Goldrath, D. L. Farber, R. G. Collman, E. J. Wherry, and D. Artis. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12: 1045-1054. https://doi.org/10.1038/ni.2131
- Spits, H., and J. P. Di Santo. 2011. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12: 21-27.
- Bernink, J., J. Mjosberg, and H. Spits. 2013. Th1- and Th2-like subsets of innate lymphoid cells. Immunol. Rev. 252: 133-138. https://doi.org/10.1111/imr.12034
- Strowig, T., F. Brilot, and C. Munz. 2008. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J. Immunol. 180: 7785-7791. https://doi.org/10.4049/jimmunol.180.12.7785
- Vivier, E., D. H. Raulet, A. Moretta, M. A. Caligiuri, L. Zitvogel, L. L. Lanier, W. M. Yokoyama, and S. Ugolini. 2011. Innate or adaptive immunity? The example of natural killer cells. Science 331: 44-49. https://doi.org/10.1126/science.1198687
- Halim, T. Y., A. MacLaren, M. T. Romanish, M. J. Gold, K. M. McNagny, and F. Takei. 2012. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37: 463-474. https://doi.org/10.1016/j.immuni.2012.06.012
- Wong, S. H., J. A. Walker, H. E. Jolin, L. F. Drynan, E. Hams, A. Camelo, J. L. Barlow, D. R. Neill, V. Panova, U. Koch, F. Radtke, C. S. Hardman, Y. Y. Hwang, P. G. Fallon, and A. N. McKenzie. 2012. Transcription factor RORalpha is critical for nuocyte development. Nat. Immunol. 13: 229-236. https://doi.org/10.1038/ni.2208
- Hoyler, T., C. S. Klose, A. Souabni, A. Turqueti-Neves, D. Pfeifer, E. L. Rawlins, D. Voehringer, M. Busslinger, and A. Diefenbach. 2012. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37: 634-648. https://doi.org/10.1016/j.immuni.2012.06.020
- Sonnenberg, G. F., L. A. Monticelli, M. M. Elloso, L. A. Fouser, and D. Artis. 2011. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34: 122-134. https://doi.org/10.1016/j.immuni.2010.12.009
- Coccia, M., O. J. Harrison, C. Schiering, M. J. Asquith, B. Becher, F. Powrie, and K. J. Maloy. 2012. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J. Exp. Med. 209: 1595-1609. https://doi.org/10.1084/jem.20111453
- Kim, H. Y., H. J. Lee, Y.-J. Chang, M. Pichavant, S. A. Shore, K. A. Fitzgerald, Y. Iwakura, E. Israel, K. Bolger, J. Faul, R. H. DeKruyff, and D. T. Umetsu. 2013. IL-17 producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Med. doi:10.1038/nm.3423
-
Villanova, F., B. Flutter, I. Tosi, K. Grys, H. Sreeneebus, G. K. Perera, A. Chapman, C. H. Smith, P. Di Meglio, and F. O. Nestle. 2014. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of
$NKp44^+$ ILC3 in psoriasis. J. Invest. Dermatol. 134: 984-991. https://doi.org/10.1038/jid.2013.477 - Teunissen, M. B., J. M. Munneke, J. H. Bernink, P. I. Spuls, P. C. Res, A. Te Velde, S. Cheuk, M. W. Brouwer, S. P. Menting, L. Eidsmo, H. Spits, M. D. Hazenberg, and J. Mjosberg. 2014. Composition of Innate Lymphoid Cell Subsets in the Human Skin: Enrichment of NCR ILC3 in Lesional Skin and Blood of Psoriasis Patients. J. Invest. Dermatol. doi: 10.1038/jid.2014.146
- Tumanov, A. V., E. P. Koroleva, X. Guo, Y. Wang, A. Kruglov, S. Nedospasov, and Y. X. Fu. 2011. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10: 44-53. https://doi.org/10.1016/j.chom.2011.06.002
- Zhou, L. 2012. Striking similarity: GATA-3 regulates ILC2 and Th2 cells. Immunity 37: 589-591. https://doi.org/10.1016/j.immuni.2012.10.002
-
Satoh-Takayama, N., S. Lesjean-Pottier, P. Vieira, S. Sawa, G. Eberl, C. A. Vosshenrich, and J. P. Di Santo. 2010. IL-7 and IL-15 independently program the differentiation of intestinal CD3-
$NKp46^+$ cell subsets from Id2-dependent precursors. J. Exp. Med. 207: 273-280. https://doi.org/10.1084/jem.20092029 -
Cherrier, M., S. Sawa, and G. Eberl. 2012. Notch, Id2, and
$ROR\gamma{t}$ sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med. 209: 729-740. https://doi.org/10.1084/jem.20111594 -
Possot, C. 2011. Notch signaling is necessary for adult, but not fetal, development of
$ROR\gamma{t}^{+}$ innate lymphoid cells. Nat. Immunol. 12: 949-958. https://doi.org/10.1038/ni.2105 - Hughes, T., E. L. Briercheck, A. G. Freud, R. Trotta, S. McClory, S. D. Scoville, K. Keller, Y. Deng, J. Cole, N. Harrison, C. Mao, J. Zhang, D. M. Benson, J. Yu, and M. A. Caligiuri. 2014. The transcription factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep. doi: 10.1016/j.celrep.2014.05.042
- Klose, C. S., M. Flach, L. Mohle, L. Rogell, T. Hoyler, K. Ebert, C. Fabiunke, D. Pfeifer, V. Sexl, D. Fonseca-Pereira, R. G. Domingues, H. Veiga-Fernandes, S. J. Arnold, M. Busslinger, I. R. Dunay, Y. Tanriver, and A. Diefenbach. 2014. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157: 340-356. https://doi.org/10.1016/j.cell.2014.03.030
- Malhotra, A., and A. Shanker. 2011. NK cells: immune cross-talk and therapeutic implications. Immunotherapy 3: 1143-1166. https://doi.org/10.2217/imt.11.102
- Li, F., H. Zhu, R. Sun, H. Wei, and Z. Tian. 2012. Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J. Virol. 86: 2251-2258. https://doi.org/10.1128/JVI.06209-11
- Jayaraman, A., D. J. Jackson, S. D. Message, R. M. Pearson, J. Aniscenko, G. Caramori, P. Mallia, A. Papi, B. Shamji, M. Edwards, J. Westwick, T. Hansel, L. A. Stanciu, S. L. Johnston, and N. W. Bartlett. 2014. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol. doi: 10.1038/mi.2014.2.
- Korsgren, M., C. G. Persson, F. Sundler, T. Bjerke, T. Hansson, B. J. Chambers, S. Hong, L. Van Kaer, H. G. Ljunggren, and O. Korsgren. 1999. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J. Exp. Med. 189: 553-562. https://doi.org/10.1084/jem.189.3.553
- Mathias, C. B., L. A. Guernsey, D. Zammit, C. Brammer, C. A. Wu, R. S. Thrall, and H. L. Aguila. 2014. Pro-inflammatory role of natural killer cells in the development of allergic airway disease. Clin. Exp. Allergy 44: 589-601. https://doi.org/10.1111/cea.12271
- Farhadi, N., L. Lambert, C. Triulzi, P. J. Openshaw, N. Guerra, and F. J. Culley. 2014. Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation. J. Allergy Clin. Immunol. 133: 827-835. https://doi.org/10.1016/j.jaci.2013.09.048
- Fort, M. M., J. Cheung, D. Yen, J. Li, S. M. Zurawski, S. Lo, S. Menon, T. Clifford, B. Hunte, R. Lesley, T. Muchamuel, S. D. Hurst, G. Zurawski, M. W. Leach, D. M. Gorman, and D. M. Rennick. 2001. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15: 985-995. https://doi.org/10.1016/S1074-7613(01)00243-6
- Fallon, P. G., S. J. Ballantyne, N. E. Mangan, J. L. Barlow, A. Dasvarma, D. R. Hewett, A. McIlgorm, H. E. Jolin, and A. N. McKenzie. 2006. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203: 1105-1116. https://doi.org/10.1084/jem.20051615
-
Allakhverdi, Z., M. R. Comeau, D. E. Smith, D. Toy, L. M. Endam, M. Desrosiers, Y. J. Liu, K. J. Howie, J. A. Denburg, G. M. Gauvreau, and G. Delespesse. 2009.
$CD34^+$ hemopoietic progenitor cells are potent effectors of allergic inflammation. J. Allergy Clin. Immunol. 123: 472-478. https://doi.org/10.1016/j.jaci.2008.10.022 - Saenz, S. A., M. C. Siracusa, J. G. Perrigoue, S. P. Spencer, J. F. Jr. Urban, J. E. Tocker, A. L. Budelsky, M. A. Kleinschek, R. A. Kastelein, T. Kambayashi, A. Bhandoola, and D. Artis. 2010. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464: 1362-1366. https://doi.org/10.1038/nature08901
- Spits, H., and T. Cupedo. 2012. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30: 647-675. https://doi.org/10.1146/annurev-immunol-020711-075053
- Price, A. E., H. E. Liang, B. M. Sullivan, R. L. Reinhardt, C. J. Eisley, D. J. Erle, and R. M. Locksley. 2010. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. U. S. A. 107: 11489-11494. https://doi.org/10.1073/pnas.1003988107
- Hong, J. Y., J. K. Bentley, Y. Chung, J. Lei, J. M. Steenrod, Q. Chen, U. S. Sajjan, and M. B. Hershenson. 2014. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J. Allergy Clin. Immunol. 134(2): 429-439. https://doi.org/10.1016/j.jaci.2014.04.020
- Blanken, M. O., M. M. Rovers, J. M. Molenaar, P. L. Winkler-Seinstra, A. Meijer, J. L. Kimpen, L. Bont, and Dutch RSV Neonatal Network. 2013. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N. Engl. J. Med. 368: 1791-1799. https://doi.org/10.1056/NEJMoa1211917
- Monticelli, L. A., G. F. Sonnenberg, M. C. Abt, T. Alenghat, C. G. Ziegler, T. A. Doering, J. M. Angelosanto, B. J. Laidlaw, C. Y. Yang, T. Sathaliyawala, M. Kubota, D. Turner, J. M. Diamond, A. W. Goldrath, D. L. Farber, R. G. Collman, E. J. Wherry, and D. Artis. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. doi: 10.1031/ni.2131.
- Kearley, J., K. F. Buckland, S. A. Mathie, and C. M. Lloyd. 2009. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am. J. Respir. Crit. Care Med. 179: 772-781. https://doi.org/10.1164/rccm.200805-666OC
- Barlow, J. L., A. Bellosi, C. S. Hardman, L. F. Drynan, S. H. Wong, J. P. Cruickshank, and A. N. McKenzie. 2012. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129: 191-198. https://doi.org/10.1016/j.jaci.2011.09.041
-
Bartemes, K. R., K. Iijima, T. Kobayashi, G. M. Kephart, A. N. McKenzie, and H. Kita. 2012. IL-33-responsive lineage-
$CD25^+$ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J. Immunol. 188: 1503-1513. https://doi.org/10.4049/jimmunol.1102832 - Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T. K. McClanahan, G. Zurawski, M. Moshrefi, J. Qin, X. Li, D. M. Gorman, J. F. Bazan, and R. A. Kastelein. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479-490. https://doi.org/10.1016/j.immuni.2005.09.015
- Hurst, S. D., T. Muchamuel, D. M. Gorman, J. M. Gilbert, T. Clifford, S. Kwan, S. Menon, B. Seymour, C. Jackson, T. T. Kung, J. K. Brieland, S. M. Zurawski, R. W. Chapman, G. Zurawski, and R. L. Coffman. 2002. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169: 443-453. https://doi.org/10.4049/jimmunol.169.1.443
- Klein Wolterink, R. G., A. Kleinjan, M. van Nimwegen, I. Bergen, M. de Bruijn, Y. Levani, and R. W. Hendriks. 2012. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol. 42: 1106-1116. https://doi.org/10.1002/eji.201142018
- Halim, T. Y., R. H. Krauss, A. C. Sun, and F. Takei. 2012. Lung natural helper cells are a critical source of th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36: 451-463. https://doi.org/10.1016/j.immuni.2011.12.020
- Wilhelm, C., K. Hirota, B. Stieglitz, J. van Snick, M. Tolaini, K. Lahl, T. Sparwasser, H. Helmby, and B. Stockinger. 2011. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12: 1071-1077. https://doi.org/10.1038/ni.2133
-
Kurebayashi, S., E. Ueda, M. Sakaue, D. D. Patel, A. Medvedev, F. Zhang, and A. M. Jetten. 2000. Retinoid-related orphan receptor gamma
$(ROR\gamma)$ is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl. Acad. Sci. U. S. A. 97: 10132-10137. https://doi.org/10.1073/pnas.97.18.10132 -
Eberl, G., S. Marmon, M. J. Sunshine, P. D. Rennert, Y. Choi, and D. R. Littman. 2004. An essential function for the nuclear receptor
$ROR\gamma{t}$ in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5: 64-73. https://doi.org/10.1038/ni1022 -
Mebius, R. E., P. Rennert, and I. L. Weissman. 1997. Developing lymph nodes collect
$CD4^+$ $CD3^-$ $LTbeta^+$ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7: 493-504. https://doi.org/10.1016/S1074-7613(00)80371-4 - Finke, D. 2005. Fate and function of lymphoid tissue inducer cells. Curr. Opin. Immunol. 17: 144-150. https://doi.org/10.1016/j.coi.2005.01.006
-
Yoshida, H., K. Honda, R. Shinkura, S. Adachi, S. Nishikawa, K. Maki, K. Ikuta, and S. I. Nishikawa. 1999. IL-7 receptor
$alpha^+$ CD3(-) cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11: 643-655. https://doi.org/10.1093/intimm/11.5.643 -
Sawa, S., M. Lochner, N. Satoh-Takayama, S. Dulauroy, M. Berard, M. Kleinschek, D. Cua, J. P. Di Santo, and G. Eberl. 2011.
$ROR\gamma{t}^+$ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12: 320-326. -
Cupedo, T., N. K. Crellin, N. Papazian, E. J. Rombouts, K. Weijer, J. L. Grogan, W. E. Fibbe, J. J. Cornelissen, and H. Spits. 2009. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to
$RORC^+$ $CD127^+$ natural killer-like cells. Nat. Immunol. 10: 66-74. https://doi.org/10.1038/ni.1668 - Geremia, A., C. V. Arancibia-Carcamo, M. P. Fleming, N. Rust, B. Singh, N. J. Mortensen, S. P. Travis, and F. Powrie. 2011. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208: 1127-1133. https://doi.org/10.1084/jem.20101712
- Crellin, N. K., S. Trifari, C. D. Kaplan, N. Satoh-Takayama, J. P. Di Santo, and H. Spits. 2010. Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 33: 752-764. https://doi.org/10.1016/j.immuni.2010.10.012
-
Sanos, S. L., V. L. Bui, A. Mortha, K. Oberle, C. Heners, C. Johner, and A. Diefenbach. 2009.
$ROR\gamma{t}$ and commensal microflora are required for the differentiation of mucosal interleukin 22-producing$NKp46^+$ cells. Nat. Immunol. 10: 83-91. -
Satoh-Takayama, N., C. A. Vosshenrich, S. Lesjean-Pottier, S. Sawa, M. Lochner, F. Rattis, J. J. Mention, K. Thiam, N. Cerf-Bensussan, O. Mandelboim, G. Eberl, and J. P. Di Santo. 2008. Microbial flora drives interleukin 22 production in intestinal
$NKp46^+$ cells that provide innate mucosal immune defense. Immunity 29: 958-970. https://doi.org/10.1016/j.immuni.2008.11.001 - Schnyder-Candrian, S., D. Togbe, I. Couillin, I. Mercier, F. Brombacher, V. Quesniaux, F. Fossiez, B. Ryffel, and B. Schnyder. 2006. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203: 2715-2725. https://doi.org/10.1084/jem.20061401
- Kudo, M., A. C. Melton, C. Chen, M. B. Engler, K. E. Huang, X. Ren, Y. Wang, X. Bernstein, J. T. Li, K. Atabai, X. Huang, and D. Sheppard. 2012. IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 18: 547-554. https://doi.org/10.1038/nm.2684
- McKinley, L., J. F. Alcorn, A. Peterson, R. B. Dupont, S. Kapadia, A. Logar, A. Henry, C. G. Irvin, J. D. Piganelli, A. Ray, and J. K. Kolls. 2008. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 181: 4089-4097. https://doi.org/10.4049/jimmunol.181.6.4089
- Osborn, O., and J. M. Olefsky. 2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18: 363-374. https://doi.org/10.1038/nm.2627
- Holguin, F., E. R. Bleecker, W. W. Busse, W. J. Calhoun, M. Castro, S. C. Erzurum, A. M. Fitzpatrick, B. Gaston, E. Israel, N. N. Jarjour, W. C. Moore, S. P. Peters, M. Yonas, W. G. Teague, and S. E. Wenzel. 2011. Obesity and asthma: an association modified by age of asthma onset. J Allergy Clin. Immunol. 127: 1486-1493. https://doi.org/10.1016/j.jaci.2011.03.036
- Camargo, C. A., Jr., S. T. Weiss, S. Zhang, W. C. Willett, and F. E. Speizer. 1999. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. Arch. Intern. Med. 159: 2582-2588. https://doi.org/10.1001/archinte.159.21.2582
- Fuchs, A., W. Vermi, J. S. Lee, S. Lonardi, S. Gilfillan, R. D. Newberry, M. Cella, and M. Colonna. 2013. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-gamma-producing cells. Immunity 38: 769-781. https://doi.org/10.1016/j.immuni.2013.02.010
- Bernink, J. H., C. P. Peters, M. Munneke, A. A. te Velde, S. L. Meijer, K. Weijer, H. S. Hreggvidsdottir, S. E. Heinsbroek, N. Legrand, C. J. Buskens, W. A. Bemelman, J. M. Mjosberg, and H. Spits. 2013. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14: 221-229. https://doi.org/10.1038/ni.2534
- Prefontaine, D., S. Lajoie-Kadoch, S. Foley, S. Audusseau, R. Olivenstein, A. J. Halayko, C. Lemiere, J. G. Martin, and Q. Hamid. 2009. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J. Immunol. 183: 5094-5103. https://doi.org/10.4049/jimmunol.0802387
- Mjosberg, J. M., S. Trifari, N. K. Crellin, C. P. Peters, C. M. van Drunen, B. Piet, W. J. Fokkens, T. Cupedo, and H. Spits. 2011. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12: 1055-1062. https://doi.org/10.1038/ni.2104
- Kwon, B. I., S. Hong, K. Shin, E. H. Choi, J. J. Hwang, and S. H. Lee. 2013. Innate type 2 immunity is associated with eosinophilic pleural effusion in primary spontaneous pneumothorax. Am. J. Respir. Crit. Care Med. 188: 577-585. https://doi.org/10.1164/rccm.201302-0295OC
- Kim, B. S., M. C. Siracusa, S. A. Saenz, M. Noti, L. A. Monticelli, G. F. Sonnenberg, M. R. Hepworth, A. S. van Voorhees, M. R. Comeau, and D. Artis D. 2013. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5: 170ra16.
- Nagarkar, D. R., J. A. Poposki, B. K. Tan, M. R. Comeau, A. T. Peters, K. E. Hulse, L. A. Suh, J. Norton, K. E. Harris, L. C. Grammer, R. K. Chandra, D. B. Conley, R. C. Kern, R. P. Schleimer, and A. Kato. 2013. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 132: 593-600. https://doi.org/10.1016/j.jaci.2013.04.005
- Kamekura, R., T. Kojima, K. Takano, M. Go, N. Sawada, and T. Himi. 2012. The role of IL-33 and its receptor ST2 in human nasal epithelium with allergic rhinitis. Clin. Exp. Allergy 42: 218-228. https://doi.org/10.1111/j.1365-2222.2011.03867.x
- Dyring-Andersen, B., C. Geisler, C. Agerbeck, J. P. Lauritsen, S. D. Gudjonsdottir, L. Skov, and C. M. Bonefeld. 2014. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br. J. Dermatol. 170: 609-616. https://doi.org/10.1111/bjd.12658
Cited by
- Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma vol.15, pp.10, 2014, https://doi.org/10.1007/s11882-015-0561-x
- MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.6, 2014, https://doi.org/10.1142/s0192415x16500622
- Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation vol.11, pp.8, 2014, https://doi.org/10.1371/journal.pone.0160779
- Cutaneous exposure to clinically-relevant pigeon pea (Cajanus cajan) proteins promote TH2-dependent sensitization and IgE-mediated anaphylaxis in Balb/c mice vol.13, pp.6, 2014, https://doi.org/10.1080/1547691x.2016.1205159
- Dendritic Cell-Mediated Th2 Immunity and Immune Disorders vol.20, pp.9, 2014, https://doi.org/10.3390/ijms20092159
- Mediators of the homeostasis and effector functions of memory Th2 cells as novel drug targets in intractable chronic allergic diseases vol.42, pp.9, 2014, https://doi.org/10.1007/s12272-019-01159-4
- IL-17A-Producing Innate Lymphoid Cells Promote Skin Inflammation by Inducing IL-33-Driven Type 2 Immune Responses vol.140, pp.4, 2020, https://doi.org/10.1016/j.jid.2019.08.447
- Interactions between NCR+ILC3s and the Microbiome in the Airways Shape Asthma Severity vol.21, pp.4, 2014, https://doi.org/10.4110/in.2021.21.e25