DOI QR코드

DOI QR Code

유체 모델을 이용한 유전체 장벽 방전 플라즈마와 전자기파 간의 시간 의존적 상호 작용 분석

Time Dependent Interaction between Electromagnetic Wave and Dielectric Barrier Discharge Plasma Using Fluid Model

  • Kim, Yuna (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Oh, Il-Young (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Jung, Inkyun (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Hong, Yongjun (Agency for Defence Development) ;
  • Yook, Jong-Gwan (Department of Electric and Electronic Engineering, Yonsei University)
  • 투고 : 2014.04.28
  • 심사 : 2014.07.30
  • 발행 : 2014.08.31

초록

전자기파와 플라즈마의 상호 작용을 결정하는 주요 변수는 플라즈마 주파수와 충돌 주파수이며, 이 둘은 각각 전자 밀도와 전자 온도로부터 계산할 수 있다. 이 두 값은 플라즈마 발생기 종류에 따라 결정되는 시간 의존적인 변수이다. 기존의 전파 흡수 특성 연구에서는 수치 해석적 모형의 부재로 인하여 플라즈마의 시간적/공간적 변화를 간략화하거나, 상수로 가정하여 수행하였다. 본 연구에서는 플라즈마 유체 모델을 도입하여 얻어진 시간 의존적 변수 값을 전자기파감쇠량 계산에 이용함으로써 해석의 정확도를 높이는 방식을 제안하였다. 해석 대상인 유전체 장벽 방전 플라즈마는 구조적인 단순함으로 인하여 1차원 분석만으로 플라즈마 분포의 시간적 변화를 반영할 수 있다. 본 논문은 한 주기 내에서 전자 밀도와 전자 온도를 추출하여 마이크로파 입사 시 시간적 흡수 특성 변화를 분석하였다. 또한, 전자 밀도와 전자 온도의 변화에 따라 감쇠량을 계산하여 감쇠 경향성을 분석하였다.

In determining interaction between plasma and electromagnetic wave, plasma frequency and collision frequency are two key parameters. They are derived from electron density and temperature, which vary in an extremely wide range, depending on a plasma generator. Because the parameters are usually unknown, traditional researches have utilized simplified electron density model and constant electron temperature approximation. Introduction of plasma fluid model to electromagnetics is suggested to utilize relatively precise time dependent variables for given generator. Dielectric barrier discharge(DBD) generator is selected due to its simple geometry which allows us to use one dimensional analysis. Time dependent property is analyzed when microwave is launched toward parallel plate DBD plasma. Afterwards, attenuation tendency with the change of electron density and temperature is demonstrated.

키워드

참고문헌

  1. A. P. Zilinskij, I. E. Sacharov, and V. E. Golant, Fundamentals Plasma Physics, Moscow: MIR, 1983.
  2. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources", Plasma Science, IEEE Transactions on, vol. 26, no. 6, pp. 1685-1694, 1998. https://doi.org/10.1109/27.747887
  3. B. Chaudhury, S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using threedimensional computations", Plasma Science, IEEE Transactions on, vol. 37, no. 11, pp. 2116-2127, 2009. https://doi.org/10.1109/TPS.2009.2032331
  4. B. Chaudhury, S. Chaturvedi, "Three-dimensional computation of reduction in radar cross section using plasma shielding", Plasma Science, IEEE Transactions on, vol. 33, no. 6, pp. 2027-2034, 2005. https://doi.org/10.1109/TPS.2005.860122
  5. B. Chaudhury, S. Chaturvedi, "Comparison of wave propagation studies in plasmas using three-dimensional finite- difference time-domain and ray-tracing methods", Physics of Plasmas, vol. 13, no. 12, pp. 123302, 2006. https://doi.org/10.1063/1.2397582
  6. B. Chaudhury, S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using threedimensional computations", Plasma Science, IEEE Transactions on, vol. 37, no. 11, pp. 2116-2127, 2009. https://doi.org/10.1109/TPS.2009.2032331
  7. O. Il-Young, H. Yongjun, and Y. Jong-Gwan, "Extremely low dispersion higher order (2,4) 2-D-FDTD scheme for maxwell-boltzmann system", Antennas and Propagation, IEEE Transactions on, vol. 61, no. 12, pp. 6100-6106, 2013. https://doi.org/10.1109/TAP.2013.2281363
  8. G. Cerri, F. Moglie, R. Montesi, P. Russo, and E. Vecchioni, "FDTD solution of the maxwell-boltzmann system for electromagnetic wave propagation in a plasma", Antennas and Propagation, IEEE Transactions on, vol. 56, pp. 2584-2588, 2008. https://doi.org/10.1109/TAP.2008.927505
  9. H. W. Yang, "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation", Computer Physics Communications, vol. 180, no. 1, pp. 55- 60, 2009. https://doi.org/10.1016/j.cpc.2008.08.007
  10. J. Boeuf, L. Pitchford, "Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge", Journal of Applied Physics, vol. 97, no. 10, pp. 103307-103307-10, 2005. https://doi.org/10.1063/1.1901841
  11. COMSOL, Comsol multiphysics modeling guide 4.3b (COMSOL AB, Stockholm, 2013).
  12. D. B. Graves, K. F. Jensen, "A continuum model of DC and RF discharges", Plasma Science, IEEE Transactions on, vol. 14, no. 2, pp. 78-91, 1986. https://doi.org/10.1109/TPS.1986.4316510
  13. A. A. Fridman, L. A. Kennedy, Plasma Physics and Engineering, CRC, 2004.
  14. A. K. Srivastava, M. K. Garg, K. G. Prasad et al., "Characterization of atmospheric pressure glow discharge in helium using Langmuir probe, emission spectroscopy, and discharge resistivity", Plasma Science, IEEE Transactions on, vol. 35, no. 4, pp. 1135-1142, 2007. https://doi.org/10.1109/TPS.2007.897902
  15. A. Srivastava, G. Prasad, P. Atrey, and V. Kumar, "Attenuation of microwaves propagating through parallel-plate helium glow discharge at atmospheric pressure", Journal of Applied Physics, vol. 103, no. 3, pp. 033302- 033302-7, 2008. https://doi.org/10.1063/1.2838199
  16. G. Cerri, F. Moglie, R. Montesi et al., "FDTD solution of the Maxwell-Boltzmann system for electromagnetic wave propagation in a plasma", Antennas and Propagation, IEEE Transactions on, vol. 56, no. 8, pp. 2584- 2588, 2008. https://doi.org/10.1109/TAP.2008.927505
  17. P. Baille, J. -S. Chang, A. Claude, R. Hobson, G. Ogram, and A. Yau, "Effective collision frequency of electrons in noble gases", Journal of Physics B: Atomic and Molecular Physics, vol. 14, no. 9, p. 1485, 1981. https://doi.org/10.1088/0022-3700/14/9/013
  18. Y. Kim, I-. Y. Oh, Y. Hong, and J-. G. Yook, "Numerical investigation of interaction between argon glow discharge and electromagnetic waves", Isromac-15, Feb. 2014.