DOI QR코드

DOI QR Code

Automatic Detection of Vehicle Area Rectangle and Traffic Volume Measurement through Vehicle Sub-Shadow Accumulation

차량 그림자 누적을 통한 검지 영역 자동 설정 및 교통량 측정 방법

  • Kim, Jee-Wan (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Lee, Jaesung (Department of Electronic Engineering, Korea National University of Transportation)
  • Received : 2014.04.22
  • Accepted : 2014.05.26
  • Published : 2014.08.31

Abstract

There are various high-performance algorithms in the area of the existing VDSs (vehicle detection systems). However, they requires a large amount of computational time-complexity and their systems generally are very expensive and consumes high-power. This paper proposes real-time traffic information detection algorithm that can be applied to low-cost, low-power, and open development platform such as Android. This algorithm uses a vehicle's sub-shadow to set ROI(region of interest) and to count vehicles using a location of the sub-shadow and the vehicle. The proposed algorithm is able to count the vehicles per each roads and each directions separately. The experiment result show that the detection rate for going-up vehicles is 94.1% and that for going-down vehicles is 97.1%. These results are close to or surpasses 95%, the detection rate of commercial loop detectors.

기존 영상 검지기 분야에는 다양한 고성능 알고리즘들이 존재하지만 실시간 연산 요구량이 너무 많아 시스템 장비가 고가, 고전력을 소모하는 단점이 있었다. 이에 본 논문에서는 저가, 저전력 영상 검지 시스템 구현을 위해 안드로이드 플랫폼의 성능 사양에 적합한 저연산량의 영상 검지 알고리즘을 제안한다. 본 방법은 차량 하부에만 생성되는 sub-shadow 를 분리하여 이를 누적함으로써 차선 및 검지 영역을 정밀하게 설정하고 이 검지 영역을 통과하는 차량 자체와 차량 sub-shadow 의 통과패턴을 판단하여 차선별 교통량 뿐만 아니라 상행 및 하행 교통량까지 자동으로 분류할 수 있다. 실험 결과 제안하는 알고리즘은 하행 차량의 경우 평균 97.1%, 상행 차량의 경우 평균 94.1%의 검지율을 보였다. 이 결과는 상용 루프검지기의 성능 95% 에 버금가는 수준으로 만족스러운 성능을 보였다.

Keywords

References

  1. Suk-Tae Kim et. al., "The Next Generation Smart Vehicle Detection Technology, SMART-I", The Road Traffic, pp 26-33, no. 129, 2012.
  2. Suk-il Song, Jaesung Lee, Gyoon-Byung Ko, and Chul Moon, "Research Trend on Elementary Technologies of the Next Generation Smart Transportation System", Information and Communications Magazine, pp. 18-pp. 24, vol. 30, no. 10, October 2013.
  3. Barron, J.L., D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt. Performance of optical flow techniques. CVPR, 1992.
  4. Lowe, David G., "Object recognition from local scaleinvariant features", Proceedings of the International Conference on Computer Vision, pp. 1150-1157. 1999.
  5. http://www.inpai.com.cn/doc/hard/198143_-3.htm
  6. Tekalp, A. M., Smolic, A., Vetro, A., and Onural, L., Eds. "Tracking and counting vehicles in traffic video sequences using particle filtering ," vol. 99, 4. Proceedings of the IEEE. 2011.
  7. In Jung Lee, Joon Young Min, Hyoung Lee, "An Algorithm for Analysing Occulsion using ICA Method", Proceedings of KITA conference pp.457-466, 2004.
  8. Kim, Giseok, and Jae-Soo Cho. "Vision-based vehicle detection and inter-vehicle distance estimation." Control, Automation and Systems (ICCAS), 2012 12th International Conference on. IEEE, 2012.
  9. Jun-Hee Cho, Hee-Sung Kim, "Counting the number of cars waiting at the traffic light by computer vision process" Proc. of the 30th KIISE Fall Conference, Vol. no.2, pp.562-564, Oct. 2003.
  10. Piccardi, Massimo. "Background subtraction techniques: a review." Systems, man and cybernetics, 2004 IEEE international conference on. Vol. 4. 2004.
  11. Bong-Keun Kim, "A Study of Non-ROI Real-time CCTV Visibility Measurements for Highway Fog Warning System." Journal of the Korea Academia-Industrial cooperation Society conference, 709-712 , 2009 .

Cited by

  1. 수직 히스토그램 기반 그림자 제거 알고리즘을 이용한 영상 감지 시스템 설계 및 구현 vol.24, pp.1, 2014, https://doi.org/10.6109/jkiice.2020.24.1.91