DOI QR코드

DOI QR Code

Synthesis of Highly Dispersed Small Metal-Organic Frameworks Crystal Using a Polymer Additive

  • Kim, Tak Hyeon (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Cho, Yang Sang (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Lee, Chang Yeon (Department of Energy and Chemical Engineering, Incheon National University)
  • Received : 2014.04.14
  • Accepted : 2014.05.01
  • Published : 2014.09.20

Abstract

Keywords

Experimental

Ethanol, DMF, 2,5-dihydroxyterephthalic acid, cobalt(II) nitrate hexahydrate, and polyvinylpyrrolidone (PVP, Mw ≈ 55,000) were purchased from Sigma-Aldrich and used as received. Co-MOF-74 was synthesized according to a published procedure.11 SEM images were obtained from a FE-SEM (JEOL, JSM-7001F) operated at an acceleration voltage of 10 kV. Samples were coated by a layer of Au-Pt alloys (~3 nm thickness) prior to imaging. Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku XDS 2000 diffractometer using nickel-filtered copper Kα radiation (λ = 1.5412 Å) over a range of 3° < 2θ < 50° in 0.1° steps with a 1 s counting time per step. Infrared spectra were obtained from a Varian 640-IR spectrophotometer.

Synthesis of P-0, P-5, P-7, and P-14. 2,5-Dihydroxyterephthalic acid (DHTA) (0.0362 g, 0.182 mmol), Co(NO3)2·6H2O (0.178 g, 0.613 mmol), PVP (0 g for P-0, 0.608 g for P-5, 1.014 g for P-7, 2.028 g for P-14), and 15 mL of DMF: ethanol:water (1:1:1, v:v:v) were combined in a 20 mL vial equipped with a magnetic stir bar. The vial was then capped with a Teflon-lined cap and sonicated for 5 min to obtain a homogeneous solution. The resulting reaction mixture was placed in a 100 ℃ oil bath and vigorously stirred (300 rpm). After 6 h, orange powder was precipitated from the reaction mixture. The resulting suspension was cooled to room temperature. Finally, the sample was washed twice with DMF (40 mL) and twice with MeOH (40 mL) to remove excess PVP and centrifuged at 2500 rpm. The remaining orange powder was then stored in MeOH until further use.

N2 Sorption Isotherms. N2 adsorption/desorption isotherms were measured volumetrically at 77 K in the range 7.0 × 10−6 ≤ P/P0 ≤ 1.00 with an Autosorb-iQ outfitted with the micropore option by Quantachrome Instruments (Boynton Beach, Florida USA), running the Autosorb-iQ Win software package. After solvent exchange of the as-synthesized materials with MeOH (2 × 10 mL, 12 h each time), all samples were activated (i.e., outgassed) at 250 ℃ for 5 h by using the outgas port of the Autosorb-iQ instrument. The specific surface areas for N2 were calculated using the Brunauer- Emmett-Teller (BET) model in the linear range, determined using the consistency criteria.

References

  1. Ferey, G. Chem. Soc. Rev. 2008, 37, 191. https://doi.org/10.1039/b618320b
  2. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782. https://doi.org/10.1021/cr200274s
  3. Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869. https://doi.org/10.1021/cr200190s
  4. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. https://doi.org/10.1021/cr200324t
  5. Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 15858. https://doi.org/10.1021/ja206029a
  6. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232. https://doi.org/10.1021/cr200256v
  7. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. https://doi.org/10.1039/b807080f
  8. Sindoro, M.; Yanai, N.; Jee, A.-Y.; Granick, S. Acc. Chem. Res. 2013, ASAP.
  9. Ranft, A.; Betzler, S. B.; Haase, F.; Lotsch, B. V. CrystEngComm 2013, 15, 9296. https://doi.org/10.1039/c3ce41152d
  10. Cho, W.; Lee, H. J.; Oh, M. J. Am. Chem. Soc. 2008, 130, 16943. https://doi.org/10.1021/ja8039794
  11. Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870. https://doi.org/10.1021/ja8036096
  12. McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R. J. Am. Chem. Soc. 2012, 134, 7056. https://doi.org/10.1021/ja300034j
  13. Bae, Y.-S.; Lee, C. Y.; Kim, K. C.; Farha, O. K.; Nickias, P.; Hupp, J. T.; Nguyen, S. T.; Snurr, R. Q. Angew. Chem. Int. Ed. 2012, 51, 1857. https://doi.org/10.1002/anie.201107534
  14. Cho, H.-Y.; Yang, D.-A.; Kim, J.; Jeong, S.-Y.; Ahn, W.-S. Catal. Today 2012, 185, 35. https://doi.org/10.1016/j.cattod.2011.08.019
  15. Chmelik, C.; Mundstock, A.; Dietzel, P. D. C.; Caro, J. Microporous Mesoporous Mater. 2014, 183, 117. https://doi.org/10.1016/j.micromeso.2013.09.002
  16. Lee, S. J.; Park, G.; Seo, D.; Ka, D.; Kim, S. Y.; Chung, I. S.; Song, H. Chemistry - A European Journal 2011, 17, 8466. https://doi.org/10.1002/chem.201100472
  17. Yanai, N.; Sindoro, M.; Yan, J.; Granick, S. J. Am. Chem. Soc. 2012, 135, 34.

Cited by

  1. Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics vol.11, pp.39, 2014, https://doi.org/10.1021/acsami.9b13965
  2. Preparation of Gadolinium‐Based Metal‐Organic Frameworks and the Modification with Boron‐10 Isotope: A Potential Dual Agent for MRI and Neutron Capture Therapy Applications vol.6, pp.8, 2014, https://doi.org/10.1002/slct.202100438
  3. Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors vol.593, pp.None, 2014, https://doi.org/10.1016/j.jcis.2021.02.101