DOI QR코드

DOI QR Code

Mineralogical and Geochemical Studies on Tourmaline in Felsite from the Daeduk Mountain, Daegu, South Korea

대구 대덕산 규장암체에서 산출되는 전기석에 대한 광물화학적 연구

  • Received : 2014.06.04
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

The felsitic intrusives of Bulguksa granitic rocks of late Cretaceous in age are located at Mt. Daeduk, Daegu, where two different types of tourmalines are found. Two tourmalines show rounded and radiating in morphology and are found in separated region, but in same felsitic rocks. In this study, we investigate the chemical differences between two types of tourmaline and the effect of growing condition of the crystal on the its morphology. The rounded tourmaline has more amounts of Al and vacancy and less amounts of Ca, Na, K, Fe, Mn, Mg, which commonly occupy X and Y-site of the tourmaline. On the basis of the Diffusion-limited aggregation model, morphological irregularity indicates the active mobility of the magma. The radiating tourmaline, therefore, crystallized with active magma condition relatively, and the rounded tourmaline crystallized with stable magma condition created by decreasing temperature and the concentration of felsic components as the magma differentiate continually.

백악기 말기 불국사 관입암류에 해당하는 대구 대덕산 규장질 관입암체 내에서는 구형, 방사형의 두 가지 형태의 전기석 결정이 발견된다. 이 연구에서는 두 가지 형태를 보이는 전기석의 광물화학적인 특징과 더불어 결정화 환경이 형태적인 차이점에 끼친 영향에 대해 알아보았다. 두 전기석은 화학적으로 모두 철전기석에 해당하며, 구형 전기석은 방사형 전기석에 비해 Al이 풍부하고 Ca, Na, K, Fe, Mn, Mg 등이 결핍되어 X 및 Y 사이트가 채워져 있지 않음을 알 수 있었다. 한편 확산규제결합(DLA) 모델에 의하면 결정의 성장형태가 불규칙적일수록 마그마의 유동이 활발하다고 알려져 있다. 따라서 방사형 전기석이 비교적 유동적인 환경에서 결정화되었음을 알 수 있으며, 마그마의 분화에 따라 고철질 성분에 비해 규장질 성분이 농집되면서 마그마 환경이 안정되고 구형의 전기석을 만들어 내기에 적합한 환경이 조성되었을 것이라 판단된다.

Keywords

References

  1. Aref, H. and El Naschie, M.S. (1995) Chaos applied to fluid mixing, Pergamon Press. Reprinted from Chaos, Solutions and Fractals, 4(6), 377.
  2. Benard, F., Moutou, P., and Pichavant, M. (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J. Geol., 93, 271-291. https://doi.org/10.1086/628952
  3. Boyd, R.J. (2002) The partioning behaviour of boron from tourmaline during ashing of coal. International Journal of Coal Geology, 53, 43-54. https://doi.org/10.1016/S0166-5162(02)00163-5
  4. Burianek, D. and Novak, M. (2006) Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: Example from the Bohemian Massif. Czech Republic, Lithos., 1-17.
  5. Cashman, K.V. (1993) Relationship between crystallization and cooling rate: insight from textural studies of dikes. Contrib. Mineral. Petrol., 113, 126-142. https://doi.org/10.1007/BF00320836
  6. Cavaretta, G. and Puzedda, M. (1990) Schorl-dravite- ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderello geothermal field. Italy, Econ. Geol., 85, 1236-1251. https://doi.org/10.2113/gsecongeo.85.6.1236
  7. Choo, C.O. (2003) Mineralogical studies on complex zoned tourmaline in diaspore nodules from the Milyang clay deposit. Korea. Geosciences Journal, 7-2, 151-156. https://doi.org/10.1007/BF02910218
  8. Dutrow, B.L. and Henry, D.J. (2000) Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais Brazil: A record of evolving of magmatic and hydrothermal fluids. Can. Mineral., 38, 131-143. https://doi.org/10.2113/gscanmin.38.1.131
  9. Faure F., Trolliard G., Nicollet C., and Montel J.M. (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib. Mineral. Petrol., 145, 251-263. https://doi.org/10.1007/s00410-003-0449-y
  10. Ferrachat, S. and Ricard, Y. (1998) Regular vs. chaotic mantle mixing. Earth Planet Sci. Lett., 155, 75-86. https://doi.org/10.1016/S0012-821X(97)00200-8
  11. Ferreira S.C. (1994) Effects of the screening breakdown in the diffusion-limited aggregation model. Eur. Phys. J. B., 42, 263-269.
  12. Flinders, J. and Clemens, J.D. (1996) Non-linear dynamics, chaos, complexity and enclaves in granitoid magmas. Trans. R. Soc. Edinburgh Earth Sci., 87, 225-232. https://doi.org/10.1017/S0263593300006635
  13. Hawthorne, F.C. and Henry, D.J. (1999) Classification of the minerals of the tourmaline group. Eur. J. Mineral., 11, 201-215. https://doi.org/10.1127/ejm/11/2/0201
  14. Hawthorne, F.C., MacDonald, D.J., and Burns, P.C. ( 1993) Al/Mg disorder in the crystal structure of dravite. American Mineralogist, 78, 265-270.
  15. Henry, D.J., and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologicapplications. Rev. Mineral., 33, 500-555.
  16. Kim, S.J., Kim, J.J., and Choo, C.O. (1992) Mineralogy and genesis of hydrothermal deposits in the southeastern part of Korean peninsula: (3) Milyang napseok deposit. Jour. Mineral. Soc. Korea, 5, 93-101.
  17. London, D. (1999) Stability of tourmaline in peraluminous granite systems: the boroncycle from anatexis to hydrothermal aureoles. Eur. Jour. Mineral., 11, 253-262. https://doi.org/10.1127/ejm/11/2/0253
  18. Min, K.D., Kim, O.J., Lee, D.S., and Choo, S.H. (1982) Applicability of plate tectonics to the post Late Cretaceous igneous activitied and mineralization in Southern part of South Korea(1). Jour. Korea Inst. Mining. Geol., 15, 123-154.
  19. Morgan, G.B. and London, D. (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: Implications for tourmaline stability and partial melting in mafic rocks. Contrib. Mineral. Petrol., 102, 281-297. https://doi.org/10.1007/BF00373721
  20. Oh, C.W., Kim, S.W., Hwang, S.K., Son, C.W., Kim, C.S., and Kim, H.S. (2004) The Study on the Spherulitic Rhyolites in the northern part of Juwang Mt., Cheongsong. Journal of Petrological Society of Korea, 13, 103-118.
  21. Perugini, D. and Poli, G. (2005) Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: field evidence and fluid-mechanics experiments. Geology, 33, 5-8 https://doi.org/10.1130/G21075.1
  22. Perugini, D., Poli, G., and Gatta, G. (2002) Analysis and simulation of magma mixing processes in 3D. Lithos., 65, 313-330. https://doi.org/10.1016/S0024-4937(02)00198-6
  23. Perugini, D., Poli, G., and Mazzuoli, R. (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. J. Volcanol. Geoth. Res., 124, 255-279. https://doi.org/10.1016/S0377-0273(03)00098-2
  24. Perugini, D., Ventura, G., Petrelli, M., and Poli, G. ( 2004) Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (Southern Italy). Earth Planet Sci. Lett., 222, 1051-1066. https://doi.org/10.1016/j.epsl.2004.03.038
  25. Power, G.M. (1968) Chemical variation in tourmalines from southwest England. Mineral. Mag., 36, 1078-1089. https://doi.org/10.1180/minmag.1968.036.284.05
  26. Shao-Young, J., Martin, R., Eizo, N., Martin, P., Katsura, K., Hai-Xiang Z., and Kui-Dong, Z. (2008) Chemical and boron isotopic variations of tourmaline in the Hnilec ranite-related hydrothermal system, Slovakia: Constrainsts on magmatic and metamorphic fluid evolution. Lithos., 11-21.
  27. Slack, J.F., Palmer, M.R., and Stevens, B.P.J. (1989) Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits. Nature, 342, 913-916. https://doi.org/10.1038/342913a0
  28. Tagg, S.L., Cho, H., Dyar, M.D., and Grew, E.S. (1999) Tetrahedral boron in naturally occurring tourmaline. American Mineralogist, 84, 1451-1455. https://doi.org/10.2138/am-1999-0925
  29. Taylor, M.C., Cooper, M.A., and Hawthorne, F.C. (1995) Local charge-compensation in hydroxyl- deficient uvite. Can. Mineral., 33, 1215-1221.
  30. Torres-Ruiz, J., Pesquera, A., Gil-Crespo, P.P., and Velilla, N. (2003) Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada, Betic Cordillera, southeastern Spain. Chemical Geology, 197, 55-86. https://doi.org/10.1016/S0009-2541(02)00357-1
  31. Vicsek, T. (1985) Formation of solidification patterns in aggregation models, Phys. Rev. A, 32, 3084-3089. https://doi.org/10.1103/PhysRevA.32.3084
  32. Witten, T.A. and Sander L.M. (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett., 47, 1400-1403. https://doi.org/10.1103/PhysRevLett.47.1400
  33. Witten, T.A. and Sander, L.M. (1983) Diffusion-limited aggregation. Phys. Rev., B27, 5686-5697.
  34. Won, J.K., Koh, J.B., and Hong, S.H. (1971) Geological map of Korea, Kyeongsan sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources.

Cited by

  1. Identification of sources affecting water chemistry in the Nakdong River, South Korea vol.76, pp.10, 2017, https://doi.org/10.1007/s12665-017-6690-x