DOI QR코드

DOI QR Code

해면 Callyspongia elegans에 서식하는 세균군집의 계통학적 다양성

Phylogenetic Diversity of Bacterial Community Inhabited in Callyspongia elegans

  • 박소현 (제주대학교 해양의생명과학부) ;
  • 김지영 (제주대학교 기초과학연구소) ;
  • 김영주 (제주대학교 해양과환경연구소) ;
  • 허문수 (제주대학교 해양의생명과학부)
  • Park, So-Hyun (Department of Aquatic Life Medicine, College of Ocean Science) ;
  • Kim, Ji-Young (Marine and Environmental Research Institute, Jeju National University) ;
  • Kim, Young-Ju (Research Institute for Basic Science, Jeju National University) ;
  • Heo, Moon-Soo (Department of Aquatic Life Medicine, College of Ocean Science)
  • 투고 : 2014.05.12
  • 심사 : 2014.06.25
  • 발행 : 2014.06.30

초록

이 논문은 Callyspongia elegans에서 서식하는 세균군집에 관한 내용이다. 해양세균은 marine agar를 사용하여 해면동물 C. elelgans에서 분리하였다. 그 결과 112균주를 분리하였으며, 본 연구에 사용하였다. 현미경 및 그람 염색을 통해 형태학적 표현형질을 측정하였다. 분리균주의 집락 색소는 노란색, 갈색, 아이보리색, 흰색으로 나타났다. 그람염색 결과 37균주는 그람양성균이였으며, 75균주는 그람 음성균이었다. 균주의 형태는 분리균주 중 79균주는 구균형태로 관찰되었고, 16균주는 간균이었다. 16S rDNA 유전자 염기서열 분석을 통해 분리균주들의 계통학적 특성을 파악하였다. 그 결과, 분리된 112균주는 5개의 주요 계통군이 확인되었으며, Alphaproteobacteria는 39%, Gammaproteobacteria는 22%, Acinobacteria는 14%, Firmicutes는 9%, Bacteroidetes는 6%에 속하는 것으로 나타났다. 그리고 16S rDNA 유전자 염기서열을 통해 계통분석 결과 15균주가 새로운 속 또는 종으로 분류될 가능성을 나타났으며, 앞으로 추가적인 실험이 필요한 실정이다.

The aim of this study was to investigate the bacterial community inhabited in Callyspongia elegans. Marine bacteria were isolated from the marine sponge C. elegans using marine agar. The resulting 112 isolated pure cultures were then used for further study. They were characterized by determining morphological characteristics through Gram's staining and morphological observation. The colony pigments of bacterial isolates were characterized as yellow, brown, ivory, and white. Thirty-seven strains were found to be Gram-positive and 75 strains were Gram-negative. Seventy-nine strains were coccus-shaped, while 16 strains were rod-shaped. On the basis of the results of the comparative analyses of 16S rDNA gene sequences, the 112 isolated bacteria were divided into 5 major groups: Alphaproteobacteria (39%), Gammaproteobacteria (22%), Actinobacteria (14%), Fimicutes (9%), and Bacteroidetes (6%). It is strongly suggested that fifteen isolates are candidates for a new genera or species, based on the analyses of 16S rDNA gene sequences.

키워드

참고문헌

  1. Alfreider, A., Pernthhaler, J., Amann, R., Sattler, B., Glockner, F.O., Wille, A., and Psenner, R. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 2138-2144.
  2. Braekman, J. and Daloze, D. 2004, Chemical and biological aspects of sponge secondary metabolites. Phytochem. Rev. 3, 275-282. https://doi.org/10.1007/s11101-004-3253-z
  3. Cho, H.H. and Park, J.S. 2009. Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP. Kor. J. Microbiol. 45, 155-162.
  4. Cho, H.H., Shim, E.J., and Park, J.S. 2010. Phylogenetic diversity of bacteria associated with the marine sponges, Spirastrella abata and Cinachyrella sp. Kor. J. Microbiol. 46, 177-182.
  5. Eilers, H., Pernthaler, J., Glockner, F.O., and Aman, R. 2000. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044-3051. https://doi.org/10.1128/AEM.66.7.3044-3051.2000
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum like lihood approach. J. Mol. Evol. 17, 368-376. https://doi.org/10.1007/BF01734359
  7. Friedrich, A.B., Hacker, J., Fischer, I., Proksch, P., and Hentschel, U. 2001. Temporal variations of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113. https://doi.org/10.1111/j.1574-6941.2001.tb00888.x
  8. Graeber, I., Kaesler, I., Borchert, M.S., Dieckmann, R., Page, T., Lurz, R., Nielsen, P., Dohren, H.V., Michaelis, W., and Szewzyk, U. 2008. Spongiibacter marinus gen. nov., sp. nov., a Halophilic marine bacterium isolated from the boreal sponge Haliclona sp.1. Int. J. Syst. Evol. Microbiol. 58, 585-590. https://doi.org/10.1099/ijs.0.65438-0
  9. Guangyi, W. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551. https://doi.org/10.1007/s10295-006-0123-2
  10. Hentschel, U., Usher, K.M., and Taylor, M.W. 2006. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55, 167-177. https://doi.org/10.1111/j.1574-6941.2005.00046.x
  11. Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C., O'Connor, P.M., Ross, R.P., and et al. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish Waters. Mar. Biotechnol. 11, 384-396. https://doi.org/10.1007/s10126-008-9154-1
  12. Lafi, F.F., Garson, M.J., and Fuerst, J.A. 2005. Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the great barrier reef display similar phylogenetic diversity. Microb. Ecol. 50, 213-220. https://doi.org/10.1007/s00248-004-0202-8
  13. Lee, O.O., Wong, Y.H., and Qian, P.Y. 2009. Inter and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Appl. Environ. Microbiol. 75, 3513-3521. https://doi.org/10.1128/AEM.00002-09
  14. Levina, E.V., Kalinovsky, A.I., Andriyashenko, P.V., Dmitrenok, P.S., Aminin, D.L., and Stonik, V.A. 2005. Phrygiasterol, a cytotoxic cyclopropane containing polyhydroxysteroid, and related compounds from the pacific starfish Hippasteria phrygiana. J. Nat. Prod. 68, 1541-1544. https://doi.org/10.1021/np049610t
  15. Li, Z.Y., He, L.M., Wu, J., and Jiang, Q. 2006. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J. Exp. Mar. Biol. Ecol. 329, 75-85. https://doi.org/10.1016/j.jembe.2005.08.014
  16. Mohamed, N.M., Rao, V., Hamann, M.T., Kelly, M., and Hill, R.T. 2008. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl. Environ. Microbiol. 74, 4133-4143. https://doi.org/10.1128/AEM.00454-08
  17. Muscholl-Silberhorn, A., Thiel, V., and Imhoff, J.F. 2008. Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microbiol. Ecol. 55, 94-106. https://doi.org/10.1007/s00248-007-9255-9
  18. Park, J.S. 2010. Bacterial community diversity associated with two marine sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis. Kor. J. Microbiol. 46, 255-260.
  19. Park, J.S., Sim, J.J., and An, K.D. 2009. Community structure of bacteria associated with two marine sponges from Juju Island based on 16S rDNA-DGGE profile. Kor. J. Microbiol. 45, 170-176.
  20. Radwan, M., Hanora, A., Zan, J., Mohamed, N.M., Abo Elmatty, D.M., Abou-El-Ela, S.H., and Hill, R.T. 2010. Bacterial community analyses of two red sea sponges. Mar. Biotechnol. 12, 350-360. https://doi.org/10.1007/s10126-009-9239-5
  21. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  22. Sung, H.R. and Ghim, S.Y. 2010. Bacterial diversity and distribution of cultivable bacteria isolated from Dokdo Island. Kor. J. Microbiol. Biotechnol. 38, 263-272.
  23. Tamaki, H., Sekiguchi, Y., Hanada, S., Nakamura, K., Nomura, N., Matsumura, M., and Kamagata, Y. 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl. Environ. Microbiol. 71, 2162-2169. https://doi.org/10.1128/AEM.71.4.2162-2169.2005
  24. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Taylor, M.W., Schupp, P.J., de Nys, R., Kjelleberg, S., and Steinberg, P.D. 2005. Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7, 419-433. https://doi.org/10.1111/j.1462-2920.2004.00711.x
  26. Thiel, V., Leininger, S., Schmaljohann, R., Brummer, F., and Imhoff, J.F. 2007. Sponge- specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb. Ecol. 54, 101-111. https://doi.org/10.1007/s00248-006-9177-y
  27. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Thomas, T.R.A., Kavlekar, D.P., and LokaBharathi, P.A. 2010. Marine drugs from sponge-microbe association-a review. Mar. Drugs 8, 1417-1468. https://doi.org/10.3390/md8041417
  29. Thoms, C., Horn, M., Wagner, W., Hentschel, U., and Proksch, P. 2003. Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following trasplantation. Mar. Biol. 142, 685-692. https://doi.org/10.1007/s00227-002-1000-9

피인용 문헌

  1. 초록갈파래(Umbraulva japonica)에서 분리한 세균의 군집 구조 분석 및 항균 활성 vol.46, pp.2, 2014, https://doi.org/10.4014/mbl.1803.03016
  2. 해면 추출물의 신경세포 보호 및 항염증 활성과 함유 성분의 HPLC 프로파일링 vol.64, pp.1, 2014, https://doi.org/10.3839/jabc.2021.006