DOI QR코드

DOI QR Code

온대지역 댐 하류의 탈질화 능력과 탈질화균 분포

Denitrification Potential and Denitrifier Abundance in Downstream of Dams in Temperate Streams

  • ;
  • 이승훈 (연세대학교 토목환경공학과) ;
  • ;
  • 정석희 (연세대학교 토목환경공학과) ;
  • 강호정 (연세대학교 토목환경공학과)
  • Vo, Nguyen Xuan Que (School of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Seung-Hoon (School of Civil and Environmental Engineering, Yonsei University) ;
  • Doan, Tuan Van (School of Civil and Environmental Engineering, Yonsei University) ;
  • Jung, Sokhee P. (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kang, Hojeong (School of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2014.04.03
  • 심사 : 2014.05.26
  • 발행 : 2014.06.30

초록

댐의 존재가 하천 생태계에 미치는 영향을 연구하기 위해 다양한 연구가 지금까지 수행되어 왔지만, 댐이 하류의 탈질화에 미치는 영향은 잘 알려져 있지 않다. 대한민국 낙동강의 댐 원류에서 탈질화 효소 활성도(잠재 탈질율)와 탈질균 분포(nirS, nirK, nosZ 유전자를 표지유전자로 사용)를 조사하였다. 자갈 혹은 모래로 채워진 하천의, 갈대가 우거진 하변지역과 강바닥의 침전물을 채취하여 조사하였다. 이 실험의 가설은 다음과 같다. (i) 하천 침전물의 N과 C의 사용유효량이 높을수록 대조군에 비해 미생물 군집의 탈질화 작용이 더욱 증진한다, (ii) 하천생태계마다 상이하게 나타나는 잠재 탈질율 간의 차이는 탈질 미생물의 양에 비례한다. 30여 년간 댐에 의해 수문학적으로 큰 차이가 있었고 또한 댐 하류의 저서에 무기질소와 용존유기탄소 농도가 대조군에 비해 매우 높았음에도 불구하고, 탈질균 군집의 양과 잠재 탈질율은 하천 간에 큰 차이가 없었다. 하지만 nirS 유전자와 nosZ 유전자의 양과 잠재 탈질율은 댐 하류에 존재하는 자갈이 많은 하변과 모래가 많은 하천 바닥에서 홍수빈도와 계절별 온도변동에 관련하여 크게 증가함을 알 수 있었다. nirK 유전자는 모든 시료에서 발견되지 않았다. Canonical correspondence analysis (CCA) 분석결과는 탈질균 군집 양과 영양염류 가용도와 잠재 탈질율 사이에는 약한 상관관계가 있음을 보여주었다.

Various studies have been conducted to investigate effects of dams on river ecosystems, but less information is available regarding damming impacts on downstream denitrification. We measured denitrification enzyme activity (potential denitrification rate) and denitrifier abundances (using nirS, nirK, and nosZ as markers) in dammed headstreams of the Nakdong River in South Korea. Sediments in Phragmites-dominated riparian areas and in-stream areas across streams (dammed vs. reference) with different streambed materials (gravel and sand) were sampled occasionally. We hypothesized that (i) the higher available N and C contents in sediments downstream of dams foster larger denitrifier communities than in the reference system and (ii) differences in potential denitrification rates across the systems correspond with denitrifier abundances. Despite 30 years of different hydrological management with dams and greater inorganic N and DOC contents in sediments downstream of dams, compared to the references, abundances of denitrifier communities and potential denitrification rates within the whole sediment were not significantly different across the systems. However, nirS and nosZ denitrifier abundances and potential denitrification rates were considerably increased in specific sediments downstream of dams (gravelly riparian and sandy in-stream) with regard to flooding events and seasonal temperature variation. nirK was not amplified in all sediments. Canonical correspondence analyses (CCA) revealed that the relationship between abundances of denitrifier communities and nutrient availabilities and potential denitrification rates was a weak one.

키워드

참고문헌

  1. Attard, E., Recous, S., Chabbi, A., De Berranger, C., Guillaumaud, N., Labreuche, J., Philippot, L., Schmid, B., and Le Roux, X. 2011. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob. Change Biol. 17, 1975-1989. https://doi.org/10.1111/j.1365-2486.2010.02340.x
  2. Boyer, E., Goodale, C., Jaworski, N., and Howarth, R. 2002. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57, 137-169. https://doi.org/10.1023/A:1015709302073
  3. Braker, G., Fesefeldt, A., and Witzel, K.P. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64, 3769-3775.
  4. Burgin, A. and Hamilton, S. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5, 89-96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
  5. Burke, M., Jorde, K., and Buffington, J.M. 2009. Application of a hierarchical framework for assessing environmental impacts of dam operation: changes in streamflow, bed mobility and recruitment of riparian trees in a western North American river. J. Environ. Manage. 90, S224-S236. https://doi.org/10.1016/j.jenvman.2008.07.022
  6. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kuista, M., Mueller, R., and Nolan, T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611-622. https://doi.org/10.1373/clinchem.2008.112797
  7. Cao, Y.P., Green, P.G., and Holden, P.A. 2008. Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl. Environ. Microbiol. 74, 7585-7595. https://doi.org/10.1128/AEM.01221-08
  8. Chen, N., Wu, J., Chen, Z., Lu, T., and Wang, L. 2014. Spatial-temporal variation of dissolved $N_{2}$ and denitrification in an agricultural river network, southeast China. Agricul. Ecosyst. Environ. 189, 1-10. https://doi.org/10.1016/j.agee.2014.03.004
  9. Cho, H.J., Jin, S.N., Cho, K.H., Woo, H.S., and Egger, G. 2012. Establishment and expansion of willows after dam operation in a monsoonal sandy stream. In Mader, H. and Kraml, J. (eds.). 9th International Symposium on Ecohydraulics. Vienna, Austria.
  10. Choi, S.U.K., Yoon, B., and Woo, H. 2005. Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Res. Applications 21, 315-325. https://doi.org/10.1002/rra.849
  11. Chun, K.C., Chang, R.W., Williams, G.P., Chang, Y.S., Tomasko, D., LaGory, K., Ditmars, J., Chun, H.D., and Lee, B.K. 2001. Water quality issues in the Nakdong River Basin in the Republic of Korea. Environ. Engineer. Policy 2, 12.
  12. Dandie, C.E., Burton, D.L., Zebarth, B.J., Henderson, S.L., Trevors, J.T., and Goyer, C. 2008. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Appl. Environ. Microbiol. 74, 5997-6005. https://doi.org/10.1128/AEM.00441-08
  13. Dandie, C.E., Miller, M.N., Burton, D.L., Zebarth, B.J., Trevors, J.T., and Goyer, C. 2007. Nitric oxide reductase-targeted real-time PCR quantification of denitrifier populations in soil. Appl. Environ. Microbiol. 73, 4250-4258. https://doi.org/10.1128/AEM.00081-07
  14. Dandie, C.E., Wertz, S., Leclair, C.L., Goyer, C., Burton, D.L., Patten, C.L., Zebarth, B.J., and Trevors, J.T. 2011. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol. Ecol. 77, 69-82. https://doi.org/10.1111/j.1574-6941.2011.01084.x
  15. Davidsson, T.E. and Stahl, M. 2000. The influence of organic carbon on nitrogen transformations in five wetland soils. Soil Sci. Soc. America J. 64, 1129-1136. https://doi.org/10.2136/sssaj2000.6431129x
  16. Dong, L.F., Smith, C.J., Papaspyrou, S., Stott, A., Osborn, A.M., and Nedwell, D.B. 2009. Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne estuary, United Kingdom). Appl. Environ. Microbiol. 75, 3171-3179. https://doi.org/10.1128/AEM.02511-08
  17. Ellis, M.J., Grossmann, J.G., Eady, R.R., and Hasnain, S.S. 2007. Genomic analysis reveals widespread occurrence of new classes of copper nitrite reductases. J. Biol. Inorg. Chem. 12, 1119-1127. https://doi.org/10.1007/s00775-007-0282-2
  18. Enwall, K., Throback, I.N., Stenberg, M., Soderstrom, M., and Hallin, S. 2010. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl. Environ. Microbiol. 76, 2243-2250. https://doi.org/10.1128/AEM.02197-09
  19. Fierer, N., Lauber, C.L., Ramirez, K.S., Zaneveld, J., Bradford, M.A., and Knight, R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007-1017. https://doi.org/10.1038/ismej.2011.159
  20. Findlay, S., Mulholland, P.J., Hamilton, S., Tank, J., Bernot, M., Burgin, A., Crenshaw, C., Dodds, W., Grimm, N., and McDowell, W. 2011. Cross-stream comparison of substrate-specific denitrification potential. Biogeochemistry 104, 381-392. https://doi.org/10.1007/s10533-010-9512-8
  21. Fisher, S.G., Heffernan, J.B., Sponseller, R.A., and Welter, J.R. 2007. Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems. Geomorphology 89, 84-96. https://doi.org/10.1016/j.geomorph.2006.07.013
  22. Friedl, G. and Wuest, A. 2002. Disrupting biogeochemical cycles - Consequences of damming. Aquatic Sci. 64, 55-65. https://doi.org/10.1007/s00027-002-8054-0
  23. Frossard, A. 2011. Microbial dynamics during stream ecosystem succession: community structure and enzyme activities., Swiss Federal Institute of Technology Zurich, Switzerland.
  24. Genkai-Kato, M., Mitsuhashi, H., Kohmatsu, Y., Miyasaka, H., Nozaki, K., and Nakanishi, M. 2005. A seasonal change in the distribution of a stream-dwelling stonefly nymph reflects oxygen supply and water flow. Ecol. Res. 20, 223-226. https://doi.org/10.1007/s11284-004-0029-2
  25. Gergel, S.E., Carpenter, S.R., and Stanley, E.H. 2005. Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain denitrification. Glob. Change Biol. 11, 1352-1367. https://doi.org/10.1111/j.1365-2486.2005.00966.x
  26. Graham, D.W., Trippett, C., Dodds, W.K., O'Brien, J.M., Banner, E.B.K., Head, I.M., Smith, M.S., Yang, R.K., and Knapp, C.W. 2010. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environ. Pollut. 158, 3225-3229. https://doi.org/10.1016/j.envpol.2010.07.010
  27. Grant, G.E., Schmidt, J.C., and Lewis, S.L. 2003. A peculiar river: Geology, geomorphology, and hydrology of the Deschutes river, Oregon, pp. 203-219. AGU, Washington DC, USA.
  28. Groffman, P.M., Holland, E.A., Myrold, D.D., Robertson, G.P., and Zou, X. 1999. Standard soil methods for long-term ecological research. In Robertson, G.P., Bledsoe, C.S., Coleman, D.C., and Sollins, P. (eds.), pp. 272-290, Oxford University Press, New York, USA.
  29. Groffman, P.M., Howard, G., Gold, A.J., and Nelson, W.M. 1996. Microbial nitrate processing in shallow groundwater in a riparian forest. J. Environ. Qual. 25, 1309-1316.
  30. Hallin, S., Jones, C.M., Schloter, M., and Philippot, L. 2009. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J. 3, 597 -605. https://doi.org/10.1038/ismej.2008.128
  31. Henry, S., Baudoin, E., Lopez-Gutierrez, J.C., Martin-Laurent, F., Brauman, A., and Philippot, L. 2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59, 327-335. https://doi.org/10.1016/j.mimet.2004.07.002
  32. Hill, A.R., Devito, K.J., Campagnolo, S., and Sanmugadas, K. 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51, 193-223. https://doi.org/10.1023/A:1006476514038
  33. Huang, S., Chen, C., Wu, Q., Zhang, R., and Yang, X. 2011. Distribution of typical denitrifying functional genes and diversity of the nirS-encoding bacterial community related to environmental characteristics of river sediments. Biogeosciences Discussions 8, 5251-5280. https://doi.org/10.5194/bgd-8-5251-2011
  34. IPCC. 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change.
  35. Jenkins, M.C. and Kemp, W.M. 1984. The coupling of nitrification and denitrification in two estuarine sediments. Limnol. Oceanogr. 29, 11.
  36. Jones, C.M., Graf, D.R., Bru, D., Philippot, L., and Hallin, S. 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J. 7, 417-426. https://doi.org/10.1038/ismej.2012.125
  37. Jones, C.M. and Hallin, S. 2010. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J. 4, 633-641. https://doi.org/10.1038/ismej.2009.152
  38. Jones, C.M., Stres, B., Rosenquist, M., and Hallin, S. 2008. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 25, 1955-1966. https://doi.org/10.1093/molbev/msn146
  39. Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D., and Philippot, L. 2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957-5962. https://doi.org/10.1128/AEM.00439-06
  40. Kang, H.J., Freeman, C., Lee, D., and Mitsch, W.J. 1998. Enzyme activities in constructed wetlands: implication for water quality amelioration. Hydrobiologia 368, 231-235. https://doi.org/10.1023/A:1003219123729
  41. Knapp, C.W., Dodds, W.K., Wilson, K.C., O'Brien, J.M., and Graham, D.W. 2009. Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ. Sci. Technol. 43, 4273-4279. https://doi.org/10.1021/es9001407
  42. Kondolf, G.M., Boulton, A.J., O'Daniel, S., Poole, G.C., Rachel, F.J., Stanley, E.H., Wohl, E., Bang, A., Carlstrom, J., Cristoni, C., and et al. 2006. Process-based ecological river restoration: Visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecol. Soc. 11, 5.
  43. Kong, A.Y., Hristova, K., Scow, K.M., and Six, J. 2010. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523-1533. https://doi.org/10.1016/j.soilbio.2010.05.021
  44. Leach, M. 2009. Influence of an upstream dam on riparian zone hydrology and shallow groundwater nitrate dynamics. Thesis, McMaster University, Hamilton, Ontario.
  45. Leps, J. and Smilauer, P. 2003. Multivariate analysis of ecological data using CANOCO, Cambridge University Press.
  46. Ligi, T., Truu, M., Truu, J., Nolvak, H., Kaasik, A., Mitsch, W.J., and Mander, U. 2013. Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex. Ecol. Engineer., in press.
  47. Lin, X., Tfaily, M.M., Green, S.J., Steinwegd, J.M., Chanton, P., Imvittaya, A., Chanton, J.P., Cooper, W., Schadt, C., and Kostk, J.E. 2014. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl. Environ. Microbiol. 80, 3531-3540. https://doi.org/10.1128/AEM.00206-14
  48. Liu, X.D., Tiquia, S.M., Holguin, G., Wu, L.Y., Nold, S.C., Devol, A.H., Luo, K., Palumbo, A.V., Tiedje, J.M., and Zhou, J.Z. 2003. Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific coast of Mexico. Appl. Environ. Microbiol. 69, 3549-3560. https://doi.org/10.1128/AEM.69.6.3549-3560.2003
  49. Luo, J., Tillman, R., and Ball, P. 1999. Factors regulating denitrification in a soil under pasture. Soil Biol. Biochem. 31, 913-927. https://doi.org/10.1016/S0038-0717(99)00013-9
  50. Ma, W.K., Bedard-Haughn, A., Siciliano, S.D., and Farrell, R.E. 2008. Relationship between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils. Soil Biol. Biochem. 40, 1114-1123. https://doi.org/10.1016/j.soilbio.2007.12.004
  51. Mackelprang, R., Waldrop, M.P., DeAngelis, K.M., David, M.M., Chavarria, K.L., Blazewicz, S.J., Rubin, E.M., and Jansson, J.K. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368-371. https://doi.org/10.1038/nature10576
  52. Maingi, J.K. and Marsh, S.E. 2002. Quantifying hydrologic impacts following dam construction along the Tana River, Kenya. J. Arid Environ. 50, 53-79. https://doi.org/10.1006/jare.2000.0860
  53. McClain, M.E., Boyer, E.W., Dent, C.L., Gergel, S.E., Grimm, N.B., Groffman, P.M., Hart, S.C., Harvey, J.W., Johnston, C.A., Mayorga, E., and et al. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301-312. https://doi.org/10.1007/s10021-003-0161-9
  54. Miller, M.N., Zebarth, B.J., Dandie, C.E., Burton, D.L., Goyer, C., and Trevors, J.T. 2008. Crop residue influence on denitrification, $N_{2}O$ emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 40, 2553-2562. https://doi.org/10.1016/j.soilbio.2008.06.024
  55. Mulholland, P.J., Helton, A.M., Poole, G.C., Hall, R.O., Hamilton, S.K., Peterson, B.J., Tank, J.L., Ashkenas, L.R., Cooper, L.W., Dahm, C.N., and et al. 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452, 202-246. https://doi.org/10.1038/nature06686
  56. Myrold, D.D., Zeglin, L.H., and Jansson, J.K. 2013. The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci. Soc. America J. 78, 3-10.
  57. Nilsson, C., Reidy, C.A., Dynesius, M., and Revenga, C. 2005. Fragmentation and flow regulation of the world's large river systems. Science 308, 405-408. https://doi.org/10.1126/science.1107887
  58. Page, A.L. 1982. Methods of soil analysis. Part 2: Chemical and microbiological properties., Soil Science Society of America Madison, WI, USA.
  59. Peralta, A.L., Matthews, J.W., and Kent, A.D. 2010. Microbial community structure and denitrification in a wetland mitigation bank. Appl. Environ. Microbiol. 76, 4207-4215. https://doi.org/10.1128/AEM.02977-09
  60. Philippot, L., Andert, J., Jones, C.M., Bru, D., and Hallin, S. 2011. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for $N_{2}O$ emissions from soil. Glob. Change Biol. 17, 1497-1504. https://doi.org/10.1111/j.1365-2486.2010.02334.x
  61. Philippot, L., Cuhel, J., Saby, N.P.A., Cheneby, D., Chronakova, A., Bru, D., Arrouays, D., Martin-Laurent, F., and Simek, M. 2009. Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environ. Microbiol. 11, 1518-1526. https://doi.org/10.1111/j.1462-2920.2009.01879.x
  62. Philippot, L. and Hallin, S. 2005. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr. Opin. Microbiol. 8, 234-239. https://doi.org/10.1016/j.mib.2005.04.003
  63. Philippot, L., Hallin, S., and Schloter, M. 2007. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agronomy 96, 249-305. https://doi.org/10.1016/S0065-2113(07)96003-4
  64. Pinardi, M., Bartoli, M., Longhi, D., Marzocchi, U., Laini, A., Ribaudo, C., and Viaroli, P. 2009. Benthic metabolism and denitrification in a river reach: a comparison between vegetated and bare sediments. J. Limnol. 68, 133-145. https://doi.org/10.4081/jlimnol.2009.133
  65. Pinay, G., Black, V.J., Planty-Tabacchi, A.M., Gumiero, B., and Decamps, H. 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50, 163-182. https://doi.org/10.1023/A:1006317004639
  66. Rastogi, G. and Sani, R. 2011. Molecular techniques to assess microbial community structure, function, and dynamics in the environment, pp. 29-57. In Ahmad, I., Ahmad, F., and Pichtel, J. (eds.), Microbes and microbial technology, Springer, New York, USA.
  67. Rich, J.J., Heichen, R.S., Bottomley, P.J., Cromack, K., and Myrold, D.D. 2003. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl. Environ. Microbiol. 69, 5974-5982. https://doi.org/10.1128/AEM.69.10.5974-5982.2003
  68. Seitzinger, S., Harrison, J., Bohlke, J., Bouwman, A., Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064 -2090. https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
  69. Skiba, U. and Smith, K.A. 2000. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere - Global Change Sci. 2, 379-386. https://doi.org/10.1016/S1465-9972(00)00016-7
  70. Smith, C.J. and Osborn, A.M. 2009. Advantages and limitations of quantitative PCR (q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6-20. https://doi.org/10.1111/j.1574-6941.2008.00629.x
  71. Smith, M.S. and Tiedje, J.M. 1979. Phases of denitrification following oxygen depletion in soil. Soil Biol. Biochem. 11, 7.
  72. Solomon, C.T., Hotchkiss, E.R., Moslemi, J.M., Ulseth, A.J., Stanley, E.H., Hall, R.O., and Flecker, A.S. 2009. Sediment size and nutrients regulate denitrification in a tropical stream. J. North American Benthological Society 28, 480-490. https://doi.org/10.1899/07-157.1
  73. Song, K., Lee, S.H., Mitsch, W.J., and Kang, H. 2010. Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biol. Biochem. 42, 1721 -1727. https://doi.org/10.1016/j.soilbio.2010.06.007
  74. Stanley, E.H. and Doyle, M.W. 2002. A geomorphic perspective on nutrient retention following dam removal. BioScience 52, 693-701. https://doi.org/10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2
  75. Starr, R.C. and Gillham, R.W. 1993. Denitrification and organic carbon availability in two aquifers. Ground Water 31, 934-947. https://doi.org/10.1111/j.1745-6584.1993.tb00867.x
  76. Stevenson, B.S. and Schmidt, T.M. 2004. Life history implications of rRNA gene copy number in Escherichia coli. Appl. Environ. Microbiol. 70, 6670-6677. https://doi.org/10.1128/AEM.70.11.6670-6677.2004
  77. Strauss, E.A., Richardson, W.B., Cavanaugh, J.C., Bartsch, L.A., Kreiling, R.M., and Standorf, A.J. 2006. Variability and regulation of denitrification in an Upper Mississippi River backwater. J. North American Benthological Society 25, 596-606. https://doi.org/10.1899/0887-3593(2006)25[596:VARODI]2.0.CO;2
  78. Stres, B., Danevcic, T., Pal, L., Fuka, M.M., Resman, L., Leskovec, S., Hacin, J., Stopar, D., Mahne, I., and Mandic-Mulec, I. 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66, 110-122. https://doi.org/10.1111/j.1574-6941.2008.00555.x
  79. Udy, J.W., Fellows, C.S., Bartkow, M.E., Bunn, S.E., Clapcott, J.E., and Harch, B.D. 2006. Measures of nutrient processes as indicators of stream ecosystem health. Hydrobiologia 572, 89-102. https://doi.org/10.1007/s10750-005-9006-1
  80. Verbaendert, I., De Vos, P., Boon, N., and Heylen, K. 2011. Denitrification in Gram-positive bacteria: an underexplored trait. Biochem. Soc. Trans. 39, 254-258. https://doi.org/10.1042/BST0390254
  81. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., and Tilman, D. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7, 737-750.
  82. Wallenstein, M.D., Myrold, D.D., Firestone, M., and Voytek, M. 2006. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol. Appl. 16, 2143-2152. https://doi.org/10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
  83. Welti, N., Bondar-Kunze, E., Singer, G., Tritthart, M., Zechmeister-Boltenstern, S., Hein, T., and Pinay, G. 2012. Large-scale controls on potential respiration and denitrification in riverine floodplains. Ecol. Engineer. 42, 73-84. https://doi.org/10.1016/j.ecoleng.2012.02.005
  84. Wohl, E.E. and Cenderelli, D.A. 2000. Sediment deposition and transport patterns following a reservoir sediment release. Water Resour. Res. 36, 319-333. https://doi.org/10.1029/1999WR900272
  85. Zumft, W.G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533-616.