DOI QR코드

DOI QR Code

Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites

산화 그래핀과 나노 흑연이 폴리스티렌 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향

  • Yeom, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
  • 염효열 (수원대학교 공과대학 신소재공학과) ;
  • 나효열 (수원대학교 공과대학 신소재공학과) ;
  • 이성재 (수원대학교 공과대학 신소재공학과)
  • Received : 2014.01.23
  • Accepted : 2014.02.27
  • Published : 2014.07.25

Abstract

Carbon-based nanoplatelets such as graphene oxide (GO) sheets and graphite nanoplatelets (GNPs) are frequently used as conductive nanofillers for polymer nanocomposites. In this study, polystyrene (PS)/GO and PS/GNP nanocomposites were prepared through a latex technology and investigated to compare the effect of nanofillers on rheological and electrical properties of the PS nanocomposites. PS particles were prepared by emulsifier-free emulsion polymerization and GO was synthesized by using the modified Hummers' method from graphite. Hydrophilic GO was dispersed in aqueous PS suspension, but hydrophobic GNPs were dispersed with the help of a surfactant. In comparison with PS/GO nanocomposites, the rheological properties of PS/GNP counterparts were not too high because GNP existed in aggregates of graphene layers. Conducting pathways of PS/GO and PS/GNP nanocomposites were achieved at the electrical percolation threshold of 0.50 and 5.82 wt%, respectively. The reason for enhanced electrical conductivity in PS/GO nanocomposites is that GO was thermally reduced during molding.

탄소기반 판상형 나노재료인 산화 그래핀(GO)과 나노 흑연(GNP)은 고분자재료에 전기 전도성을 부여하기 위한 복합재료용 나노필러로 사용되고 있다. 본 연구에서는 폴리스티렌(PS)에 나노필러를 첨가한 PS/GO와 PS/GNP 나노복합재료를 라텍스 기법으로 제조한 다음 유변학적, 전기적 물성을 비교 고찰하였다. PS 입자는 무유화제 유화중합으로 중합하였으며, GO는 흑연으로부터 modified Hummers 방법으로 합성하였다. 친수성인 GO는 첨가제 없이 PS 수성 현탁액에 분산하였으며, GNP는 분산성을 높이기 위해 계면활성제를 첨가하여 분산하였다. 나노필러에 따른 유변물성은 GO가 GNP에 비해 높게 나타났는데, GO는 단일층으로 분산이 가능한 반면, GNP는 다수의 층이 겹쳐진 형태이므로 나노 규모의 균질한 분산을 이루지 못하기 때문이다. 전도성 통로가 형성되는 지점인 전기적 임계점은 PS/GO, PS/GNP 나노복합재료에 대하여 각각 0.50, 5.82 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전기 전도도를 보여주는 이유는 성형 시 열처리에 의해 GO가 환원되기 때문이다.

Keywords

Acknowledgement

Supported by : 한국연구재단(NRF)

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. G. Yin, Z. Zheng, H. Wang, Q. Du, and H. Zhang, J. Colloid Interf. Sci., 394, 192 (2013). https://doi.org/10.1016/j.jcis.2012.11.024
  3. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  4. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  5. W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Carbon, 65, 296 (2013). https://doi.org/10.1016/j.carbon.2013.08.029
  6. S. Jiang, Z. Gui, C. Bao, K. Dai, X. Wang, K. Zhou, Y. Shi, S. Lo, and Y. Hu, Chem. Eng. J., 226, 326 (2013). https://doi.org/10.1016/j.cej.2013.04.068
  7. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA, 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  8. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science, 312, 1191, (2006). https://doi.org/10.1126/science.1125925
  9. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  10. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature, 458, 872 (2009). https://doi.org/10.1038/nature07872
  11. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  12. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  13. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol., 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  14. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  15. J. Wang, T. Zhou, H. Deng, F. Chen, K. Wang, Q. Zhang, and Q. Fu, Colloid Surf. B, 101, 171 (2013). https://doi.org/10.1016/j.colsurfb.2012.06.008
  16. W. Chen, L. Yan, and P. R. Bangal, Carbon, 48, 1146 (2010). https://doi.org/10.1016/j.carbon.2009.11.037
  17. Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, ACS Nano, 4, 1227 (2010). https://doi.org/10.1021/nn901689k
  18. M. A. Raza, A. Westwood, A. Brown, N. Hondow, and C. Stirling, Carbon, 49, 4269 (2011). https://doi.org/10.1016/j.carbon.2011.06.002
  19. K. Wakabayashi, P. J. Brunner, J. I. Masuda, S. A. Hewlett, and J. M. Torkelson, Polymer, 51, 5525 (2010). https://doi.org/10.1016/j.polymer.2010.09.007
  20. Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, and Z. Guo, Macromol. Chem. Phys., 212, 1951 (2011). https://doi.org/10.1002/macp.201100263
  21. S. Ansari and E. P. Giannelis, J. Polym. Sci. Part B: Polym. Phys., 47, 888 (2009). https://doi.org/10.1002/polb.21695
  22. M. H. Kang, W. J. Noh, D. K. Woo, and S. J. Lee, Polymer(Korea), 36, 364 (2012).
  23. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Chem. Mater., 11, 771 (1999). https://doi.org/10.1021/cm981085u
  24. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006). https://doi.org/10.1016/j.polymer.2005.11.028
  25. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007). https://doi.org/10.1021/cm0630800
  26. H. M. Ju, S. H. Huh, S. H. Choi, and H. L. Lee, Mater. Lett., 64, 357 (2010). https://doi.org/10.1016/j.matlet.2009.11.016
  27. A. J. Paine, W. Luymes, and J. McNulty, Macromolecules, 23, 3104 (1990). https://doi.org/10.1021/ma00214a012
  28. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004). https://doi.org/10.1021/ma049164g

Cited by

  1. Effect of polycarbonate structure and reduction time on graphene oxide dispersion vol.26, pp.10, 2015, https://doi.org/10.1002/pat.3559
  2. 그래핀을 코팅한 폴리우레탄 폼의 전기적 특성과 연소성 vol.42, pp.3, 2014, https://doi.org/10.7317/pk.2018.42.3.470
  3. Poly(urethane-urea)/Thin-Walled Carbon Nanotube 나노복합체의 제조 및 특성 vol.57, pp.2, 2020, https://doi.org/10.12772/tse.2020.57.106
  4. 산화그래핀 층수에 따른 폴리스타이렌 표면 코팅 특성 vol.31, pp.7, 2014, https://doi.org/10.3740/mrsk.2021.31.7.420