DOI QR코드

DOI QR Code

Carbon Electrodes in Capacitive Deionization Process

정전기적 흡·탈착 공정에서의 탄소 전극

  • Chung, Sangho (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jae Kwang (Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST)) ;
  • Ocon, Joey D. (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Son, Young-Il (Korea Environmental Industry & Technology Institute) ;
  • Lee, Jaeyoung (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 정상호 (광주과학기술원 환경공학부) ;
  • 이재광 (광주과학기술원 에틀 촉매연구센터) ;
  • 조이 오콘 (광주과학기술원 환경공학부) ;
  • 손영일 (한국환경산업기술원 미래환경사업실) ;
  • 이재영 (광주과학기술원 환경공학부)
  • Received : 2014.07.18
  • Published : 2014.08.10

Abstract

With the world population's continuous growth and urban industrialization, capacitive deionization (CDI) has been proposed as a next-generation water treatment technology to augment the supply of water. As a future water treatment method, CDI attracts significant attention because it offers small energy consumption and low environmental impact in comparison to conventional methods. Carbon electrodes, which have large surface area and high conductivity, are mainly used as electrode materials of choice for the removal of ions in water. A variety of carbon materials have been investigated, including their adsorption-desorption behavior in accordance to the specific surface area and pore size distribution. In this review, we analyzed and highlighted these carbon materials and looked at the impact of pore size distribution to the overall CDI efficiency. Finally, we propose an optimal condition in the interplay between micropores and mesopores in order to provide the best electrosorption property for these carbon electrodes.

인구증가와 산업화로 인한 물의 수요 급증에 따른 제3세대 수처리 기술로써 정전기적 흡 탈착 공정에 대한 연구가 진행되고 있다. 정전기적 흡 탈착 기술의 경우, 기존에 사용되는 수처리 방법들에 비해 에너지 소비량이 적으며, 재생시에 2차 오염이 발생하지 않아 차세대 수처리 기술로 주목 받고 있다. 정전기적 흡 탈착 기술에서 이온 제거를 위한 전극 물질로는 넓은 비표면적과 높은 전도도를 갖는 탄소 전극이 주로 사용된다. 현재 다양한 탄소 물질로 이루어진 전극에 대한 연구가 수행되고 있으며, 특히 비표면적, 기공 분포에 따른 흡 탈착 연구가 활발히 진행되고 있다. 본 총설에서는 다양한 탄소 물질 및 기공 분포에 따른 영향을 분석하고, 메조기공과 마이크로기공이 조화를 이루는 최적의 조건을 제시하고자 한다.

Keywords

References

  1. J. H. Lee and J. H. Choi, The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 409, 251-256 (2012).
  2. K. Dermentzis, Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization, J. Hazard. Mater., 173, 647-652 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.133
  3. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  4. J. H. Yeo and J. H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode, Desalination, 320, 10-16 (2013). https://doi.org/10.1016/j.desal.2013.04.013
  5. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everet, J. H. Haynes, N. Pernicone, J. Ramsay, K. S. W. Sing, and K. K. Unger, Recommendations for the characterization of porous solids, Pure Appl. Chem., 66, 1739-1758 (1994).
  6. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  7. J. W. Blair and G. W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area, in Saline Water Conversion, American Chemical Society, Washington, D. C., Vol. 27, Chap. 20 (1960).
  8. B. B. Arnold and G. W. Murphy, Studies on the chemistry of carbon and chemically-modified carbon surfaces, J. Phys. Chem., 65, 135-138 (1961). https://doi.org/10.1021/j100819a038
  9. G. W. Murphy and D. D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12, 1655-1664 (1967). https://doi.org/10.1016/0013-4686(67)80079-3
  10. G. W. Murphy and J. L. Cooper, Activated carbon used as electrodes in electrochemical demineralization of saline water, U.S. Dept. of the Interior, Washington, D. C. (1969).
  11. S. Evans, M. A. Accomazzo, and J. E. Accomazzo, Electrochemically controlled ion exchange: I. Mechanism electrochemical technology, J. Electrochem. Soc., 116, 307-309 (1969). https://doi.org/10.1149/1.2411821
  12. Y. Oren, A. Soffer, Electrochemical parametric pumping electrochemical science and technology, J. Electrochem. Soc., 125, 869-875 (1978). https://doi.org/10.1149/1.2131570
  13. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, in Low Level Waste Conference, Orlando (1995).
  14. P. Xu, J. E. Drewes, D. Heil, and G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42, 2605-2617 (2008). https://doi.org/10.1016/j.watres.2008.01.011
  15. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, and J. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, J. Mater. Chem., 22, 14696-14704 (2012). https://doi.org/10.1039/c2jm31393f
  16. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196, 125-134 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  17. S. Jeon, H. Park, J. Yeo, S. C. Yang, C. H. Cho, M. H. Han, and D. K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6, 1471-1475 (2013). https://doi.org/10.1039/c3ee24443a
  18. H. Li, L. Zou, L. Pan, and Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol., 44, 8692-8697 (2010). https://doi.org/10.1021/es101888j
  19. D. Zhang, L. Shi, J. Fang, K. Dai, and X. Li, Preparation and desalination performance of multiwall carbon nanotubes, Mater. Chem. Phys., 97, 415-419 (2010).
  20. G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, and Z. Zhao, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta., 69, 65-70 (2012). https://doi.org/10.1016/j.electacta.2012.02.066
  21. H. J. Oh, J. H. Lee, H. J. Ahn, Y. Jeong, Y. J. Kim, and C. S. Chi, Nanoporous activated carbon cloth for capacitive deionization of aqueous solution, Thin Solid Films, 515, 220-225 (2006). https://doi.org/10.1016/j.tsf.2005.12.146
  22. J. Li, X. Wang, Q. Huang, S. Gamboa, and P. J. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor, J. Power Sources, 158, 784-788 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.045
  23. Z. Peng, D. S. Zhang, L. Y. Shi, T. T. Yan, S. A. Yuan, and H. R. Li, Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures, J. Phys. Chem. C, 115, 17068-17076 (2011). https://doi.org/10.1021/jp2047618
  24. H. J. Oh, J. H. Lee, H. J. Ahn, Y. Jeong, Y. J. Kim, and C. S. Chi, Nanoporous activated carbon cloth for capacitive deionization of aqueous solution, Thin Solid Films, 515, 220-225 (2006). https://doi.org/10.1016/j.tsf.2005.12.146
  25. L. Zou, G. Morris, and D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination, 225, 329-340 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  26. M. W. Ryoo, J. H. Kim, and G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid. Interf. Sci., 264, 414-419 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  27. X. Z. Wang, M. G. Li, R. M. Cheng, S. M. Huang, and L. K. Pan, Electrochem. Solid-State Lett., 9, E23-E26 (2006). https://doi.org/10.1149/1.2213354
  28. O. Barbieria, M. Hahna, A. Herzogb, and R. Kotza, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 1303-1310 (2005). https://doi.org/10.1016/j.carbon.2005.01.001
  29. D. Lee and J. Park, Mesoporous carbon electrodes for capacitive deionization, J. Korean Electrochem. Soc., 17, 57-64 (2014). https://doi.org/10.5229/JKES.2013.17.1.57
  30. C. Kim, J. Lee, S. Kim, and J. Yoon, $TiO_2$ sol-gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization, Desalination, 342, 70-74 (2014). https://doi.org/10.1016/j.desal.2013.07.016
  31. S. Chung, T. N. Tuan, J. K. Lee, and J. Lee, Ultrathin metal oxide coated mesoporous carbon material for enhanced capacitive deionization, The International Conference on Interfaces against Pollution (IAP), titled Interfaces in Water and Environmental Science; a special Symposium on Capacitive Deionization (CDI), Leeuwarden, Netherlands, 78 (2014).

Cited by

  1. Scale Formation by Electrode Reactions in Capacitive Deionization and its Effects on Desalination Performance vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1127