DOI QR코드

DOI QR Code

Study on miscibility, morphology, thermal and mechanical properties of elastomeric impact modifier reinforced Poly(lactide)/Cellulose ester blends

충격보강제로 강인화된 PLA와 cellulose ester 블렌드의 상용성 및 모폴로지, 열적, 기계적 특성에 관한 연구

  • Park, Jun-Seo (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education) ;
  • Nam, Byeong-Uk (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education)
  • 박준서 (한국기술교육대학교 에너지.신소재.화학공학부 응용화학공학과) ;
  • 남병욱 (한국기술교육대학교 에너지.신소재.화학공학부 응용화학공학과)
  • Received : 2014.04.08
  • Accepted : 2014.07.10
  • Published : 2014.07.31

Abstract

Cellulose acetate butyrate (CAB) is a biodegradable resin with excellent optical properties, but it is difficult to apply film process. In this study, an attempt was made to improve the processability of CAB using polyactic acid and the mechanical properties using an impact modifier. Polylacitc acid (PLA)/Cellulose acetate butyrate (CAB) blends with an impact modifier were prepared using a twin screw extruder. The temperature range was $140^{\circ}C$ to $200^{\circ}C$, and the screw speed was fixed to 200 rpm. To evaluate the miscibility of impact modified CAB/PLA, the glass transition behavior and morphology were observed by DSC and FE-SEM. The mechanical properties were investigated by dynamic mechanical analysis (DMA) and a Universal Testing Machine (UTM). In addition, the effect of an impact modifier in the polymer matrix was determined using a notched Izod impact strength tester. Finally, the PLA/CAB/impact modifier 75/25/10 ratio was found to be a compatible system. In the 10wt.% impact modifier, the sample had a 4 times higher izod impact strength than the non-toughening composition.

CAB는 광학적 특성이 우수한 생분해성 수지이나 취약한 가공성으로 인해 필름 어플리케이션에 제한되어 있다. 본 실험에서는 비교적 가공성이 우수한 폴리락틱산을 이용하여 CAB의 가공성을 향상시키고, 충격보강제 도입으로 기계적 물성을 보완하고자 하였다. 이전 실험에서 PLA/CAB binary 블렌드의 PLA75CAB25조성이 상용성을 보이는 것을 확인하였으므로 PLA75CAB25 조성에 한하여 충격보강 연구를 수행하였다. 이축압출기를 이용하여 충격보강제를 도입하고, $140^{\circ}C$(hopper)-$200^{\circ}C$(die)의 온도 범위에서 200rpm의 속도로 제조하였다. 충격보강제 도입에 따른 상용성을 평가하기 위해 DSC와 FE-SEM을 통해 유리전이온도 거동과 모폴로지를 관찰하였다. 또한 충격보강효과를 확인하기 위해 DMA와 Izod 충격강도 시험기를 이용하여 저장탄성률과 충격강도를 측정하였다. 충격보강제가 10wt%가 도입되었을 때 상용성이 가장 좋았으며, Izod 충격강도가 PLA75CAB25 조성에 비해 4배 이상 향상되었음을 확인하였다.

Keywords

References

  1. A. K. Mohanty, L.T. Drzal, M. Misra, "Nano Reinforcements of Bio-based polymer-Ther Hope and the Reality", Polym. Mater. Sci. Eng., vol.88, pp.60-61, 2003.
  2. H. M. Park, X. Li, C. J. Jin, W. J. Cho, C. S. Ha, "Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids", Macromol. Mater. Eng., vol.287, pp.553-558, 2002. DOI:http://dx.doi.org/10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
  3. S. S. Ray, M. Okamoto, "Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites Clay mechanical properties organoclay morphology crystallization", Macromol. Rapid. Commun. vol. 24, pp.815-840, 2003. DOI: http://dx.doi.org/10.1002/marc.200300008
  4. K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C. Shelton, D. Tindall, "Advances in cellulose ester performance and application", Prog. Polym. Sci., vol.26, pp.1605-1688, 2001. DOI: http://dx.doi.org/10.1016/S0079-6700(01)00027-2
  5. A. Biswas, R. L. Shogren, J. L. Willett, "Solvent-free process to esterify polysaccharides", Biomacromolecules, vol.6, pp.1843-1845, 2005. DOI: http://dx.doi.org/10.1021/bm0501757
  6. H. S. Barud, Jr. Araujo, D. B. Santos, R. M. Assuncao, C. S. Meireles, D. A. Cerqueira, G. R. Filho, C. A. Ribeiro, Y. Messadeq, S. J. R. Ribeiro, "Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose", Thermochim. Acta., vol.471, pp.61-69, 2008. DOI: http://dx.doi.org/10.1016/j.tca.2008.02.009
  7. V. Krikorian, D. J. Pochan, "Poly (L-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties", Chem. Mater., vol.15, pp.4317-4324, 2003. DOI: http://dx.doi.org/10.1021/cm034369+
  8. S. S. Ray, M. Okamoto, "New polylactide/layered silicate nanocomposites, 6 melt rheology and foam processing", Macromol. Mater. Eng., vol.288, pp.936-944, 2003. DOI: http://dx.doi.org/10.1002/mame.200300156
  9. H. Urayama, T. Kanamori, Y. Kimura, "Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate unit", Macromol. Mater. Eng., vol.287, pp.116-121, 2002. DOI: http://dx.doi.org/10.1002/1439-2054(20020201)287:2<116::AID-MAME116>3.0.CO;2-Z
  10. L. Jiang, J. Zhang, M. P. Wolcott, "Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms", Polym. vol.48, pp.7632-7644, 2007. DOI: http://dx.doi.org/10.1016/j.polymer.2007.11.001
  11. D. Lewitus, S. McCarthy, A. Ophir, S. Kenig, "The effect of nanoclays on the properties of PLLA-modified polymers part 1: mechanical and thermal properties", J. Polym. Environ., vol.14, pp.171-177, 2006. DOI: http://dx.doi.org/10.1007/s10924-006-0007-6
  12. K. Fukushima, D. Tabuani, G. Camino, "Nanocomposites of PLA and PCL based on montmorillonite and sepiolite", Mater. Sci. Eng. C., vol.29, pp.1433-1441, 2009. DOI: http://dx.doi.org/10.1016/j.msec.2008.11.005
  13. D. S. Jeong, B. U. Nam, M. O. Jang, C. H. Hong, "Study on PLLA Alloys with impact Modifier and Talc", Elastomers and composites, vol.45, pp.129-136, 2010.
  14. H. U. Jeon, S. W. Kim, G. H. Kim, I. Kim, C. S. Ha, "Properties of Poly(oxymethylene)/ Modified Poly[styrene-b-(ethylene-1-butene)-b- styrene] Triblock Copolymer Blends", Polym. (Korea), vol.28, pp.162, 2004.