DOI QR코드

DOI QR Code

Study of FAME components and total contents on Micro-algal Biodiesel derived from Dunaliella tertiolecta

Dunaliella tertiolecta를 이용한 미세조류 유래 바이오디젤의 FAME 성분 특성 연구

  • Lee, Don-Min (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Min, Kuyung-Il (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Yim, Eui-Soon (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Ha, Jong-Han (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Lee, Choul-Gyun (Dept. of Chemical and Biological Engineering, In-ha University) ;
  • Lee, Bong-Hee (Dept. of Chemical Engineering, Chungbuk National University)
  • 이돈민 (한국석유관리원 석유기술연구소) ;
  • 민경일 (한국석유관리원 석유기술연구소) ;
  • 임의순 (한국석유관리원 석유기술연구소) ;
  • 하종한 (한국석유관리원 석유기술연구소) ;
  • 이철균 (인하대학교 공과대학 생명화학공학부) ;
  • 이봉희 (충북대학교 공과대학 화학공학과)
  • Received : 2014.06.12
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

Biodiesel has very similar physical properties (density, kinematic viscosity) and has even higher cetane number compare with conventional diesel. There are no necessity to change or modify the infra-structure & engine system. It is known that fatty acid methyl ester (FAME) is oxygen-contained components increasing the combustibility, biodegradability and reduced the exhaust harmful gas. These things made the biodiesel more popular as an alternative diesel fuel. But biodiesel's sources are controversial issues about $CO_2$ reduction effect at this time because those mainly come from edible plants such as soy, palm, rapeseed already spent lot of $CO_2$ to cultivate. Whereas micro-algae is focused because they are inedible and has rapid growth rates & high carbon-dioxide adsorption rate per area. In this study, we analyze the each FAME components using $GC{\times}GC$-TOFMS in stead of GC-FID and verify the previous total FAME contents method's applicability through the micro algal biodiesel derived from Dunaliella tertiolecta.

국내 자동차용 경유에 혼합하여 유통 중인 바이오디젤은 물리적인 관점에서 기존 석유계 경유와 동점도, 밀도 등의 물성값이 유사하고 세탄가가 높은 장점이 있다. 또한 환경적인 측면에서는 기존의 석유유통 인프라 개조 및 변경없이 사용가능하다는 점과 함산소 연료로서 디젤기관에서의 연소성이 좋고 유해 배출가스 저감효과가 있으며 생분해성도 높아 환경오염이 적어 자동차용 경유 대체연료로 각광받고 있다. 그러나, 기존 식용계 작물을 원료로 하고 있다는 점에서 단점으로 지적되는 바이오디젤 대신 단위면적당 $CO_2$ 흡수율이 높고 빠른 성장 속도가 장점으로 거론되는 미세조류의 활용에 대한 연구가 대두되고 있다. 본 연구에서는 미세조류 중 Dunaliella tertiolecta 종을 이용하여 생산한 바이오디젤의 전환율을 연구하기위해 기존에 사용되고 있는 GC-FID분석방법의 문제점에 대해 조사하고 TOF-MS 장비를 통한 개별 지방산 메틸에스테르의 성분을 검토하였다.

Keywords

References

  1. A. Kirrolia, N. R. Bishnoi, and R. Singh, Microalgae as a boon for sustainable energy production and its future research & development aspects. Renew. Sustain. Energy Rev. 20: 642-656(2013).
  2. A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilefd, A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 16: 2070- 2093(2012). https://doi.org/10.1016/j.rser.2012.01.003
  3. Moon-Yong Lee, Jin-Hui Lee, Current Situation and overview of bioediesel over the global view. J. of Korean Oil Chemists' Soc. 30: 528-539 (2013). https://doi.org/10.12925/jkocs.2013.30.3.528
  4. A. S. Silitonga, H. H. Masjuki, T. M. I. Mahlia, H. C. Ong, W. T. Chong, and M. H. Boosroh, Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 22: 346-360(2013). https://doi.org/10.1016/j.rser.2013.01.055
  5. J. Singh, and S. Gu, Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 14: 2596-2610(2010). https://doi.org/10.1016/j.rser.2010.06.014
  6. M. K. Lam, and K. T. Lee, Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol. Adv. 30: 673-690(2012). https://doi.org/10.1016/j.biotechadv.2011.11.008
  7. R. Halim, M. K. Danquah, and P. A. Webley, Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 30: 709-732(2012). https://doi.org/10.1016/j.biotechadv.2012.01.001
  8. S. Amin, Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage. 50: 1834- 1840(2009). https://doi.org/10.1016/j.enconman.2009.03.001
  9. S. K. Hoekmana, A. Brocha, C. Robbinsa, E. Cenicerosa, and M. Natarajanb, Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16: 143-169(2012). https://doi.org/10.1016/j.rser.2011.07.143
  10. BRITISH STANDARD BS EN14103:2003 Fat and oil derivatives -Fatty Acid Methyl Esters (FAME)-Determination of ester and linolenic acid methyl ester contents.(2003)
  11. Jae-Kon Kim, Jo-Yong Park, Fuel properties of various biodiesel derived vegetable oil. J. of Korean Oil Chemists' Soc. 30: 45-48 (2013).
  12. J. Pullen, and K. Saeed, An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16: 5924-5950(2012). https://doi.org/10.1016/j.rser.2012.06.024
  13. R. O. Dunn, Effects of minor constituents on cold flow properties and performance of biodiesel. Prog. Energ. Combust. Sci. 35: 481-489(2009). https://doi.org/10.1016/j.pecs.2009.07.002
  14. P. V. Bhale, N. V. Deshpande, and S. B. Thombre, Improving the low temperature properties of biodiesel fuel. Renew. Energy 34: 794-800 (2009). https://doi.org/10.1016/j.renene.2008.04.037
  15. S.Kent, Amber Broch, Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16: 143-169 (2011).
  16. Jae-Kon Kim, Jo-Yong Park, Biodiesel Production Technology from Sewage Sludge. J. of Korean Oil Chemists' Soc. 30: 688-700(2013). https://doi.org/10.12925/jkocs.2013.30.4.688
  17. M. Oguma, N. Chollacoop, EAS-ERIA, Biodiesel fuel trade handbook 2010, 27-62(2010).
  18. J. -I. Park, H. -C. Woo, and J. -H. Lee, Production of bio-energy from marine algae: Status and perspectives. Korean Chem. Eng. Res. 46: 833-844(2008).

Cited by

  1. PKO 및 코코넛유래 바이오디젤 중 글리세린함량 분석 방법 개선 연구 vol.32, pp.2, 2014, https://doi.org/10.12925/jkocs.2015.32.2.348