• Title/Summary/Keyword: 지방산메틸에스테르(FAME)

Search Result 19, Processing Time 0.034 seconds

Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME (요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선)

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Shin, Jung-Ah;Lee, Ki-Teak;Choi, In-Hu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • The compositions of saturated and unsaturated fatty acids in biodiesel feedstocks are important factors for biodiesel properties including low-temperature fluidity and oxidative stability. This study was conducted to improve low-temperature fluidity of biodiesel by reducing total saturated FAME (fatty acid methyl ester) in animal fat biodiesel fuels via urea-based fractionation and by mixing plant biodiesel fuels (rapeseed-FAME, waste cooking oil-FAME, soybean-FAME, and camellia-FAME) with enriched-polyunsaturated FAME derived from animal fat biodiesel. Our results showed that the reduction of total saturated FAME in animal fat biodiesel lowered CFPP (Cold Filter Plugging Point) to $-15^{\circ}C$. Mixing plant biodiesel fuels with the enriched-polyunsaturated FAME derived from animal fat biodiesel lowered CFPP of blended biodiesel fuels to $-10{\sim}-18^{\circ}C$.

Biodiesel Production from Vegetable Oils by Transesterification Using Ultrasonic Irradiation (초음파를 이용한 에스테르 교환 반응에 의한 식물성 유지로부터 바이오디젤 제조)

  • Chung, Kyong-Hwan;Park, Byung-Geon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 2010
  • Transesterifications of vegetable oils (soybean oil, grapeseed oil, corn oil, canola oil) by ultrasonic energy were examined on various catalysts for biodiesel production. Reaction activities of the transesterifications were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties and product distribution were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The yields of fatty acid methyl ester (FAME) on the alkali catalysts were higher than those on the acid catalysts. The highest FAME yield was obtained as 83% on potassium hydroxide catalyst in the transesterification. The effective reaction conditions by ultrasonic energy were 1 wt% catalyst loading and 6:1 molar ratio of methanol to vegetable oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The acid values of the biodiesel products were improved above 30% compared to those of the feedstocks.

Optimization of Soybean Oil Fatty Acid Methyl Esters Preparation for Sucrose Polyesters Synthesis (Sucrose polyesters 합성에 사용하는 대두유 지방산 메틸에스테르 제조의 최적화)

  • Chung, Ha-Yull;Kim, Suk-Ju;Yoon, Sung-Woo;Yoon, Hee-Nam;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.240-246
    • /
    • 1992
  • Preparation of soybean oil fatty acid methyl esters (soybean oil FAME) through the transesterification of soybean oil with alkaline catalyst was optimized in terms of contents of residual free fatty acids (FFA) in soybean oil FAME and yield of soybean oil FAME due to the inhibitory effect of FFA on sucrose polyesters synthesis. Soybean oil FAME and residual FFA were analyzed quantitatively by simultaneous gas chromatography on a fused silica capillary column after converting the FFA in soybean oil FAME to tert.-butyldimethylsilyl (TBDMS) derivatives. Transesterification of soybean oil was successfully performed with alkaline catalyst (NaOH, 95%), which resulted in 99.1% yield of soybean oil FAME and less than 0.1% residual FFA contents under the conditions such as $30^{\circ}C$, 20min. and 6:1 molar ratio of anhydrous methanol to soybean oil.

  • PDF

Lipid Extraction from Nannochloropsis sp. Microalgae for Biodiesel Production Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Nannochloropsis sp. 미세조류로부터 바이오디젤 생산용 지질의 추출)

  • Choi, Kyung-Seok;Ryu, Jae-Hun;Park, Dong-Jun;Oh, Sea-Cheon;Kwak, Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.205-210
    • /
    • 2015
  • In this paper, microalgae lipid extractions were performed using conventional organic solvent and supercritical carbon dioxide (SC-$CO_2$) for biodiesel-convertible lipid fractions. The highest levels (58.31%) of fatty acid methyl ester (FAME) content in the lipid extracted by SC-$CO_2$ was obtained, and 18.0 wt.% crude lipid yield was achieved for Bligh-Dyer method. In the SC-$CO_2$ extraction, methanol as a co-solvent was applied to increase the polarity of extract. The experimental results indicated that crude lipid yield, FAME content and yield extracted by combination of SC-$CO_2$ with methanol were 12.5 wt.%, 56.32% and 7.04 wt.%, respectively, and this method could reduce the extraction time from 2 hour to 30 min when compared to SC-$CO_2$ extraction. Therefore, SC-$CO_2$ extraction is proven to be an environmentally-friendly and an effective method for lipid extraction from microalgae.

Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation (초음파를 이용한 동식물성 혼합 폐유지로부터 바이오디젤 제조)

  • Chung, Kyong-Hwan;Park, Byung-Geon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.487-492
    • /
    • 2013
  • Transesterifications of waste oils mixed with animal tallows and vegetable oil by ultrasonic energy were examined over various catalysts for biodiesel production. Reaction activities of the transesterification were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties of feedstock and products were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The highest fatty acid methyl ester (FAME) yield was obtained on the potassium hydroxide catalyst in the transesterification by ultrasonic irradiation. The effective reaction conditions by ultrasonic energy were 0.5 wt% catalyst loading and 6:1 molar ratio of methanol to the mixed oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The highest yields of FAME were obtained as 80% in 5 min and the reaction equilibrium reached at that time.

Synthesis of Biodiesel Components and Analysis of Their Fuel Characters (바이오디젤 구성성분 합성 및 연료특성 분석)

  • Lim, Young-Kwan;Jeong, Choong-Sub;Han, Kwan-Wook;Do, Jin-Woo
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Because food crops serve as the raw materials for biodiesel, the increasing use of biodiesel as an alternative fuel can lead to adverse effects such as food price inflation and may contribute to global starvation. To solve these problems, efforts are being made to explore various nonedible raw materials for producing biodiesel. Different raw materials impart different fuel characteristics to biodiesel. In this study, we synthesized pure fatty acid methyl ester (FAME), which is a biodiesel component, and then analyzed its fuel properties. The fuel properties of pure FAME would be useful in producing biodiesel from various new raw materials.

Study of FAME components and total contents on Micro-algal Biodiesel derived from Dunaliella tertiolecta (Dunaliella tertiolecta를 이용한 미세조류 유래 바이오디젤의 FAME 성분 특성 연구)

  • Lee, Don-Min;Min, Kuyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.320-328
    • /
    • 2014
  • Biodiesel has very similar physical properties (density, kinematic viscosity) and has even higher cetane number compare with conventional diesel. There are no necessity to change or modify the infra-structure & engine system. It is known that fatty acid methyl ester (FAME) is oxygen-contained components increasing the combustibility, biodegradability and reduced the exhaust harmful gas. These things made the biodiesel more popular as an alternative diesel fuel. But biodiesel's sources are controversial issues about $CO_2$ reduction effect at this time because those mainly come from edible plants such as soy, palm, rapeseed already spent lot of $CO_2$ to cultivate. Whereas micro-algae is focused because they are inedible and has rapid growth rates & high carbon-dioxide adsorption rate per area. In this study, we analyze the each FAME components using $GC{\times}GC$-TOFMS in stead of GC-FID and verify the previous total FAME contents method's applicability through the micro algal biodiesel derived from Dunaliella tertiolecta.

Analysis of Fatty Acid Compositions and Biodiesel Properties of Seeds of Woody Oil Plants in Korea (국내 목본 유지식물 종자의 지방산 조성 및 바이오디젤 특성 분석)

  • Kim, Kwang Soo;Lee, Yong Hwa;Jang, Young Seok;Choi, In Hu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.628-635
    • /
    • 2013
  • In order to evaluate their potential as sources of biodiesel, oil content and fatty acid composition of seeds and fatty acid methyl ester (FAME) properties from seven woody oil plants in Korea were analysed. The oil content of seed of all woody plant species ranged from 15.1 (Ligustrum lucidum) to 70.3% (Camellia japonica) by dry weight. Fatty acid composition consisted mainly of oleic acid, linoleic acid, linolenic acid, palmitic acid and stearic acid, with oleic acid being the most abundant. The content of unsaturated fatty acids of all species was higher than saturated fatty acids. Oxidation stability of seed oils of all woody plants ranged from 2.25 to 8.62 hours/$110^{\circ}C$. Fatty acid methyl ester of Styrax japonica has been found to have the highest iodine value, indicating that unsaturated fatty acid content is higher than other seed oils. Cold filter plug point(CFPP) was varied over a wide range from $0^{\circ}C$ to $-13^{\circ}C$. The cold fluidity of FAME of Chionanthus retusa were excellent.

Biodiesel Production from Waste Frying Oil by the Chemical Catalysts (폐유지로부터 화학촉매에 의한 바이오디젤 생산 연구)

  • Kim Deog-Keun;Lee Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.487-490
    • /
    • 2005
  • 재생 가능한 자원인 동식물성 기름으로부터 만들어지는 수송용 연료 바이오디젤은 낮은 대기오염물질 배출과 $CO_2$ Neutral 특성으로 환경친화적인 연료로 인정올 받으며 전세계적으로 그 생산량이 급격히 증가하고 있다 한국에서는 년간 20만톤의 폐식용유가 배출되며 이중 약 10만톤이 회수 가능한 것으로 추산된다. 폐식용유의 무단 폐기로 인한 수질오염과 폐기물의 자원 재활용 및 에너지 생산 관점에서 폐식용유를 바이오디젤 원료로 사용하는 연구가 많이 진행되었다. 높은 함량의 유리지방산을 함유한 폐식용유를 효율적으로 전이에스테르화(methanolysis) 하기 위해서는 먼저 산 촉매를 이용한 유리지방산의 전환 제거가 필요하다 본 연구에서는 다양한 종류의 강산성 이온교환 수지를 폐식용유의 전처리(pre-esterification)용 고체 산 촉매로 회분식 반응기에서 테스트하였으며 그 결과 Amberlyst-15가 유리지방산의 에스테르화 반응에 가장 적합한 것으로 나타났다. 회분식 반응기에서 도출된 최적 전처리 반응조건을 적용한 200시간 이상의 연속 전처리 운전결과 폐식용유에 함유된 $5\%$의 유리지방산이 $90\%$이상 전환제거 되었다 전처리 반응 후의 폐식용유를 균질계 염기촉매(KOH) 존재하에 메탄올과 전이에스테르화 반응을 시킨 결과 바이오디젤로 불리는 지방산메틸에스테르(Fatty Acid Methyl Ester, FAME)의 생산 수율은 $85\%$로 얻어졌으며 국내 바이오디젤 표준 규격에 따른 연료특성 분석 결과 FAME의 농도 규격을 제외한 모든 항목이 국내 규격을 만족하였다 폐식용유 바이오디젤의 FAME 농도가 $94.3\%$로 국내 규격$96.5\%$에 미달하는 문제는 식물성 원료유로 제조한 고순도 바이오디젤과 혼합 사용하거나 감압 증류 공정을 통해 고농도의 폐식용유 바이오디젤을 제조하여 해결 가능하다. 대전시 신성동 소재의 음식점에서 수거한 폐식용유를 원료로 하여 생산한 바이오디젤의 차량 배출가스 실증 테스트 결과 경유 차량의 주 오염물질인 PM과 Soot 및 기타 오염물질의 배출량은 감소하였으나 NOx의 배출량은 약간 증가하는 것으로 나타났다

  • PDF

Effects of Free Alkali and Moisture on Sucrose Polyesters Synthesis (유리 알카리 및 수분이 sucrose polyesters 합성에 미치는 영향)

  • Chung, Ha-Yull;Kim, Suk-Ju;Yoon, Sung-Woo;Yoon, Hee-Nam;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.247-250
    • /
    • 1992
  • Effects of free alkali and moisture on sucrose polyesters (SPE)-possible non calorie fat substitute-synthesis were investigated using a model system composed of sodium oleate, sucrose, potassium carbonate and methyl oleate. Trace amounts of free alkali in sodium oleate were found to interefere with SPE synthesis. When free alkali content in sodium oleate was varied gradually from 0% to 5%(w/w), the yield of SPE production was reduced from 92% to 45.5%. The moisture absorbed in sodium oleate, sucrose and potassium carbonate during storage also interefered with SPE synthesis. The yield (92%) of SPE production with dried ($105^{\circ}C$.6 hrs) reactants and catalysts was higher than that (89%) of SPE production with non-dried. Soybean oil fatty acid sodium soaps (FASS) not containing free alkali could be manufactured with slightly less than molar ratio of sodium hydroxide to soybean oil fatty acid methyl esters (FAME). Practically, 91.7% yield of soybean oil SPE production was outcomed by minimizing free alkali and moisture which were remaining in sucrose, potassium carbonate, soybean oil FASS and soybean oil FAME.

  • PDF