DOI QR코드

DOI QR Code

Microfluidic System Based High Throughput Drug Screening System for Curcumin/TRAIL Combinational Chemotherapy in Human Prostate Cancer PC3 Cells

  • An, Dami (Department of Nanobiomedical Science, Dankook University) ;
  • Kim, Kwangmi (College of Pharmacy, Dankook University) ;
  • Kim, Jeongyun (Department of Nanobiomedical Science, Dankook University)
  • Received : 2014.06.23
  • Accepted : 2014.07.02
  • Published : 2014.07.31

Abstract

We have developed a fully automated high throughput drug screening (HTDS) system based on the microfluidic cell culture array to perform combinational chemotherapy. This system has 64 individually addressable cell culture chambers where the sequential combinatorial concentrations of two different drugs can be generated by two microfluidic diffusive mixers. Each diffusive mixer has two integrated micropumps connected to the media and the drug reservoirs respectively for generating the desired combination without the need for any extra equipment to perfuse the solution such as syringe pumps. The cell array is periodically exposed to the drug combination with the programmed LabVIEW system during a couple of days without extra handling after seeding the cells into the microfluidic device and also, this device does not require the continuous generation of solutions compared to the previous systems. Therefore, the total amount of drug being consumed per experiment is less than a few hundred micro liters in each reservoir. The utility of this system is demonstrated through investigating the viability of the prostate cancer PC3 cell line with the combinational treatments of curcumin and tumor necrosis factor-alpha related apoptosis inducing ligand (TRAIL). Our results suggest that the system can be used for screening and optimizing drug combination with a small amount of reagent for combinatorial chemotherapy against cancer cells.

Keywords

References

  1. Adam, V., Ekblad, M., Sweeney, K., Muller, H., Busch, K. H., Johnsen, C. T., Kang, N. R., Lemoine, N. R. and Hallden, G. (2012) Synergistic and selective cancer cell killing mediated by the oncolytic adenoviral mutant addeltadelta and dietary phytochemicals in prostate cancer models. Hum. Gene Ther. 23, 1003-1015. https://doi.org/10.1089/hum.2012.046
  2. Aggarwal, B. B., Kumar, A. and Bharti, A. C. (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363-398.
  3. Amin, A. R., Kucuk, O., Khuri, F. R. and Shin, D. M. (2009) Perspectives for cancer prevention with natural compounds. J. Clin. Oncol. 27, 2712-2725. https://doi.org/10.1200/JCO.2008.20.6235
  4. Barua, S., Linton, R. S., Gamboa, J., Banerjee, I., Yarmush, M. L. and Rege, K. (2010) Lytic peptide-mediated sensitization of TRAILresistant prostate cancer cells to death receptor agonists. Cancer Lett. 293, 240-253. https://doi.org/10.1016/j.canlet.2010.01.012
  5. Beltran, H., Beer, T. M., Carducci, M. A., De Bono, J., Gleave, M., Hussain, M., Kelly, W. K., Saad, F., Sternberg, C., Tagawa, S. T. and Tannock, I. F. (2011) New therapies for castration-resistant prostate cancer: efficacy and safety. Eur. Urol. 60, 279-290. https://doi.org/10.1016/j.eururo.2011.04.038
  6. Bouralexis, S., Findlay, D. M. and Evdokiou, A. (2005) Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis 10, 35-51. https://doi.org/10.1007/s10495-005-6060-0
  7. Deeb, D., Gao, X., Jiang, H., Divine, G., Dulchavsky, S. A. and Gautam, S. C. (2006) Vaccination with leukemia-loaded dendritic cells eradicates residual disease and prevent relapse. J. Exp. Ther. Oncol. 5, 183-193.
  8. Deeb, D., Jiang, H., Gao, X., Al-Holou, S., Danyluk, A. L., Dulchavsky, S. A. and Gautam, S. C. (2007) Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nu clear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J. Pharmacol. Exp. Ther. 321, 616-625. https://doi.org/10.1124/jpet.106.117721
  9. Deeb, D., Jiang, H., Gao, X., Hafner, M. S., Wong, H., Divine, G., Chapman, R. A., Dulchavsky, S. A. and Gautam, S. C. (2004) Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol. Cancer. Ther. 3, 803-812.
  10. Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M. (2006) Formation of droplets and bubbles in a microfl uidic T-junction-scaling and mechanism of break-up. Lab. Chip 6, 437-446. https://doi.org/10.1039/b510841a
  11. Graf, N. J. and Bowser, M. T. (2013) Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding. Analyst 138, 5791-5800. https://doi.org/10.1039/c3an00671a
  12. Heger, M., Van Golen, R. F., Broekgaarden, M. and Michel, M. C. (2014) The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 66, 222-307.
  13. Hung, P. J., Lee, P. J., Sabounchi, P., Aghdam, N., Lin, R. and Lee, L. P. (2005a) A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab. Chip 5, 44-48. https://doi.org/10.1039/b410743h
  14. Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R. and Lee, L. P. (2005b) Continuous perfusion microfluidic cell culture array for high-through put cell-based assays. Biotechnol. Bioeng. 89, 1-8. https://doi.org/10.1002/bit.20289
  15. Kelley, S. K. and Ashkenazi, A. (2004) Targeting death receptors in can cer with Apo2L/TRAIL. Curr. Opin. Pharmacol. 4, 333-339. https://doi.org/10.1016/j.coph.2004.02.006
  16. Kim, J., Hegde, M. and Jayaraman, A. (2010a) Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions. Lab. Chip 10, 43-50. https://doi.org/10.1039/B911367C
  17. Kim, J., Hegde, M. and Jayaraman, A. (2010b) Microfl uidic co-culture of epithelial cells and bacteria for investigating soluble signal-mediated interactions. J. Vis. Exp.
  18. Kim, J., Hegde, M., Kim, S. H., Wood, T. K. and Jayaraman, A. (2012a) A microfluidic device for high throughput bacterial biofilm studies. Lab. Chip 12, 1157-1163. https://doi.org/10.1039/c2lc20800h
  19. Kim, J., Taylor, D., Agrawal, N., Wang, H., Kim, H., Han, A., Rege, K. and Jayaraman, A. (2012b) A programmable microfluidic cell array for combinatorial drug screening. Lab. Chip 12, 1813-1822. https://doi.org/10.1039/c2lc21202a
  20. Lai, H. and Folch, A. (2011) Design and dynamic characterization of "single-stroke" peristaltic PDMS micropumps. Lab. Chip 11, 336-342. https://doi.org/10.1039/C0LC00023J
  21. Lee, P. J., Hung, P. J., Rao, V. M. and Lee, L. P. (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol. Bioeng. 94, 5-14. https://doi.org/10.1002/bit.20745
  22. Li, N., Hsu, C. H. and Folch, A. (2005) Parallel mixing of photolithographically defi ned nanoliter volumes using elastomeric microvalve arrays. Electrophoresis 26, 3758-3764. https://doi.org/10.1002/elps.200500171
  23. Neils, C., Tyree, Z., Finlayson, B. and Folch, A. (2004) Combinatorial mi xing of microfluidic streams. Lab. Chip 4, 342-350. https://doi.org/10.1039/b314962e
  24. Ohtsuka, T., Ryu, H., Minamishima, Y. A., Ryo, A. and Lee, S. W. (2003) Modulation of p53 and p73 levels by cyclin G: implication of a negative feedback regulation. Oncogene 22, 1678-1687. https://doi.org/10.1038/sj.onc.1206306
  25. Shankar, S., Chen, X. and Srivastava, R. K. (2005) Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 62, 165-186. https://doi.org/10.1002/pros.20126
  26. Shankar, S., Siddiqui, I. and Srivastava, R. K. (2007) Molecular mechani sms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol. Cell. Biochem. 304, 273-285. https://doi.org/10.1007/s11010-007-9510-x
  27. Shankar, S., Singh, T. R. and Srivastava, R. K. (2004) Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: Intracellular mechanisms. Prostate 61, 35-49. https://doi.org/10.1002/pros.20069
  28. Sheikh, M. S. and Fornace, A. J., JR. (2000) Role of p53 family members in apoptosis. J. Cell. Physiol. 182, 171-181. https://doi.org/10.1002/(SICI)1097-4652(200002)182:2<171::AID-JCP5>3.0.CO;2-3
  29. Siddiqui, I. A., Malik, A., Adhami, V. M., Asim, M., Hafeez, B. B., Sarfaraz, S. and Mukhtar, H. (2008) Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27, 2055-2063. https://doi.org/10.1038/sj.onc.1210840
  30. Simons, J. W., Mikhak, B., Chang, J. F., Demarzo, A. M., Carducci, M. A., Lim, M., Weber, C. E., Baccala, A. A., Goemann, M. A., Clift, S. M., Ando, D. G., Levitsky, H. I., Cohen, L. K., Sanda, M. G., Mulligan, R. C., Partin, A. W., Carter, H. B., Piantadosi, S., Marshall, F. F. amd Nelson, W. G. (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocytemacrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59, 5160-5168.
  31. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. and Quake, S. R. (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-116. https://doi.org/10.1126/science.288.5463.113
  32. Wang, Z., Kim, M.-C., Marquez, M. and Thorsen, T. (2007) High-density microfl uidic arrays for cell cytotoxicity analysis. Lab. Chip 7, 740-745. https://doi.org/10.1039/b618734j
  33. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. E. (2001) Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335-373. https://doi.org/10.1146/annurev.bioeng.3.1.335
  34. Wilken, R., Veena, M. S., Wang, M. B. and Srivatsan, E. S. (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10, 12. https://doi.org/10.1186/1476-4598-10-12
  35. Zhang, L. and Fang, B. (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 12, 228-237. https://doi.org/10.1038/sj.cgt.7700792

Cited by

  1. Microfluidic cell chips for high-throughput drug screening vol.8, pp.9, 2016, https://doi.org/10.4155/bio-2016-0028
  2. Advances of Microfluidic Technologies Applied in Bio-analytical Chemistry vol.44, pp.12, 2016, https://doi.org/10.1016/S1872-2040(16)60982-9
  3. Microfluidics as a new tool in radiation biology vol.371, pp.2, 2016, https://doi.org/10.1016/j.canlet.2015.11.033
  4. High-Throughput Cytotoxicity Testing System of Acetaminophen Using a Microfluidic Device (MFD) in HepG2 Cells vol.78, pp.16, 2015, https://doi.org/10.1080/15287394.2015.1068650
  5. A valve-free 2D concentration gradient generator vol.7, pp.45, 2017, https://doi.org/10.1039/C7RA02139A
  6. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0159013
  7. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives vol.21, pp.2, 2016, https://doi.org/10.1016/j.drudis.2015.09.003
  8. Indirect co-culture of stem cells from human exfoliated deciduous teeth and oral cells in a microfluidic platform vol.13, pp.4, 2016, https://doi.org/10.1007/s13770-016-0005-2
  9. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care vol.142, pp.6, 2017, https://doi.org/10.1039/C6AN02445A
  10. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles vol.9, pp.5, 2017, https://doi.org/10.1002/wnan.1460
  11. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-017-0654-6
  12. Scalable Multiplexed Drug-Combination Screening Platforms Using 3D Microtumor Model for Precision Medicine vol.14, pp.42, 2018, https://doi.org/10.1002/smll.201703617
  13. TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors vol.24, pp.1, 2014, https://doi.org/10.1080/10717544.2017.1384863
  14. Multiple Myeloma Cell Drug Responses Differ in Thermoplastic vs PDMS Microfluidic Devices vol.89, pp.21, 2014, https://doi.org/10.1021/acs.analchem.7b02351
  15. Design and optimization of microfluidic device for generating robust uniform concentration gradients vol.124, pp.None, 2014, https://doi.org/10.1016/j.cep.2017.12.011
  16. Microfluidic Devices for Drug Assays vol.7, pp.2, 2014, https://doi.org/10.3390/ht7020018
  17. Anti-tumour effects of TRAIL-expressing human placental derived mesenchymal stem cells with curcumin-loaded chitosan nanoparticles in a mice model of triple negative breast cancer vol.46, pp.suppl3, 2014, https://doi.org/10.1080/21691401.2018.1527345
  18. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems vol.10, pp.6, 2014, https://doi.org/10.3390/mi10060414
  19. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices vol.11, pp.3, 2014, https://doi.org/10.1088/1758-5090/ab10ae
  20. Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions vol.1100, pp.None, 2014, https://doi.org/10.1016/j.aca.2019.11.047
  21. Microfluidic Devices and 3D Printing for Synthesis and Screening of Drugs and Tissue Engineering vol.59, pp.9, 2020, https://doi.org/10.1021/acs.iecr.9b03787
  22. 3D microfluidic gradient generator for combination antimicrobial susceptibility testing vol.6, pp.1, 2014, https://doi.org/10.1038/s41378-020-00200-7
  23. The prospects of tumor chemosensitivity testing at the single-cell level vol.54, pp.None, 2014, https://doi.org/10.1016/j.drup.2020.100741
  24. Anti-Cancer Drug Screening with Microfluidic Technology vol.11, pp.20, 2014, https://doi.org/10.3390/app11209418
  25. Analysis of Static Molecular Gradients in a High-Throughput Drug Screening Microfluidic Assay vol.26, pp.21, 2014, https://doi.org/10.3390/molecules26216385
  26. A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model vol.23, pp.4, 2014, https://doi.org/10.1007/s10544-021-00593-w
  27. Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics vol.21, pp.24, 2021, https://doi.org/10.1039/d1lc00895a