DOI QR코드

DOI QR Code

Selective Estrogen Receptor Modulation by Larrea nitida on MCF-7 Cell Proliferation and Immature Rat Uterus

  • Ahn, Hye-Na (College of Pharmacy, College of Science, Sookmyung Women's University) ;
  • Jeong, Si-Yeon (College of Pharmacy, College of Science, Sookmyung Women's University) ;
  • Bae, Gyu-Un (College of Pharmacy, College of Science, Sookmyung Women's University) ;
  • Chang, Minsun (Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University) ;
  • Zhang, Dongwei (Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University) ;
  • Liu, Xiyuan (Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University) ;
  • Pei, Yihua (Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Chin, Young-Won (Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Lee, Joongku (College of Pharmacy, Dongguk University-Seoul) ;
  • Oh, Sei-Ryang (International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Song, Yun Seon (College of Pharmacy, College of Science, Sookmyung Women's University)
  • Received : 2014.05.07
  • Accepted : 2014.06.19
  • Published : 2014.07.31

Abstract

Larrea nitida is a plant that belongs to the Zygophyllaceae family and is widely used in South America to treat inflammatory diseases, tumors and menstrual pain. However, its pharmacological activity remains unclear. In this study we evaluated the property of selective estrogen receptor modulator (SERM) of Larrea nitida extracts (LNE) as a phytoestrogen that can mimic, modulate or disrupt the actions of endogenous estrogens, depending on the tissue and relative amount of other SERMs. To investigate the property of SERM of LNE, we performed MCF-7 cell proliferation assays, estrogen response element (ERE)-luciferase reporter gene assay, human estrogen receptor (hER) binding assays and in vivo uterotrophic assay. To gain insight into the active principles, we performed a bioassay-guided analysis of LNE employing solvents of various polarities and using classical column chromatography, which yielded 16 fractions (LNs). LNE showed high binding affinities for $hER{\alpha}$ and $hER{\beta}$ with $IC_{50}$ values of $1.20{\times}10^{-7}$ g/ml and $1.00{\times}10^{-7}$ g/ml, respectively. LNE induced $17{\beta}$-estradiol (E2)-induced MCF-7 cell proliferation, however, it reduced the proliferation in the presence of E2. Furthermore, LNE had an atrophic effect in the uterus of immature rats through reducing the expression level of progesterone receptor (PR) proteins. LN08 and LN10 had more potent affinities for binding on $hER{\alpha}$ and ${\beta}$ than other fractions. Our results indicate that LNE had higher binding affinities for $hER{\beta}$ than $hER{\alpha}$, and showed SERM properties in MCF-7 breast cancer cells and the rat uterus. LNE may be useful for the treatment of estrogen-related conditions, such as female cancers and menopause.

Keywords

References

  1. Anesini, C., Genaro, A., Cremaschi, G., Sterin Borda, L. and Borda, E. (1999) Antimitogenic effect of Larrea divaricata Cav.: participation in arachidonate metabolism. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 122, 245-252. https://doi.org/10.1016/S0742-8413(98)10114-7
  2. Abou-Gazar, H., Bedir, E., Takamatsu, S., Ferreira, D. and Khan, I. A. (2004) Antioxidant lignans from Larrea tridentata. Phytochemistry 65, 2499-2505. https://doi.org/10.1016/j.phytochem.2004.07.009
  3. Bedell, S., Nachtigall, M. and Naftolin, F. (2014) The pros and cons of plant estrogens for menopause. J. Steroid Biochem. Mol. Biol. 139, 225-236 https://doi.org/10.1016/j.jsbmb.2012.12.004
  4. Brent, J. (1999) Three new herbal hepatotoxic syndromes. J. Toxicol. Clin. Toxicol. 37, 715-719. https://doi.org/10.1081/CLT-100102449
  5. Bongiovanni, G., Cantero, J., Eynard, A. and Goleniowski, M. (2008) Organic extracts of Larrea divaricata Cav. induced apoptosis on tumoral MCF7 cells with an higher cytotoxicity than nordihydroguaiaretic acid or paclitaxel. J. Exp. Ther. Oncol. 7, 1-7.
  6. Bryant, W., Snowhite, A. E., Rice, L. W. and Shupnik, M. A. (2005) The estrogen receptor (ER) alpha variant Delta 5 exhibits dominant positive activity on ER-regulated promoters in endometrial carcinoma cells. Endocrinology 146, 751-759. https://doi.org/10.1210/en.2004-0825
  7. Catherino, W. H. and Jordan, V. C. (1995) Increasing the number of tandem estrogen response elements increases the estrogenic activity of a tamoxifen analogue. Cancer Lett. 92, 39-47. https://doi.org/10.1016/0304-3835(95)03755-L
  8. Fujimoto, N., Kohta, R. and Kitamura, S. (2004) Estrogenic activity of an antioxidant, nordihydroguaiaretic acid (NDGA). Life Sci. 74, 1417-1425. https://doi.org/10.1016/j.lfs.2003.08.012
  9. Gierthy, J. F., Spink, B. C., Figge, H. L., Pentecost, B. T. and Spink, D. C. (1996) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 12-O-tetradecanoylphorbol-13-acetate and 17 beta-estradiol on estrogen receptor regulation in MCF-7 human breast cancer cells. J. Cell. Biochem. 60, 173-184. https://doi.org/10.1002/(SICI)1097-4644(19960201)60:2<173::AID-JCB2>3.0.CO;2-U
  10. Giangrande, P. H. and McDonnell, D. P. (1999) The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog. Horm. Res. 54, 291-313.
  11. Gisvold, O. and Thaker, E. (1974) Lignans from Larrea divaricata. J. Pharm. Sci. 63, 1905-1907. https://doi.org/10.1002/jps.2600631216
  12. Graham, J. D. and Clarke, C. L. (1997) Physiological action of progesterone in target tissues. Endocr. Rev. 18, 502-519.
  13. Hayashi, S. I., Eguchi, H., Tanimoto, K., Yoshida, T., Omoto, Y. and Inoue, A. (2003) The expression and function of estrogen receptor alpha and beta in human breast cancer and its clinical application. Endocr. Relat. Cancer 10, 193-202. https://doi.org/10.1677/erc.0.0100193
  14. Hayashi, S. and Yamaguchi, Y. (2008) Estrogen signaling pathway and hormonal therapy. Breast Cancer 15, 256-261. https://doi.org/10.1007/s12282-008-0070-z
  15. Honma, N., Horii, R., Iwase, T., Saji, S., Younes, M. and Takubo, K. (2008) Clinical importance of estrogen receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J. Clin. Oncol. 26, 3727-3734. https://doi.org/10.1200/JCO.2007.14.2968
  16. Jitsuno, M. and Mimaki, Y. (2010) Triterpene glycosides from the aerial parts of Larrea tridentata. Phytochemistry 71, 2157-2167. https://doi.org/10.1016/j.phytochem.2010.09.012
  17. Kuhl, H. and Stevenson, J. (2006) The effect of medroxyprogesterone acetate on estrogen-dependent risks and benefi ts--an attempt to interpret the Women's Health Initiative results. Gynecol. Endocrinol. 22, 303-317. https://doi.org/10.1080/09513590600717368
  18. Konno, C., Lu, Z. Z., Xue, H. Z., Erdelmeier, C. A., Meksuriyen, D. and Che, C. T. (1990) Furanoid lignans from Larrea tridentata. J. Nat. Prod. 53, 396-406. https://doi.org/10.1021/np50068a019
  19. Mulac-Jericevic, B., Lydon, J. P., DeMayo, F. J. and Conneely, O. M. (2003) Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl. Acad. Sci. U.S.A. 100, 9744-9749. https://doi.org/10.1073/pnas.1732707100
  20. Obourn, J. D., Koszewski, N. J. and Notides, A. C. (1993) Hormoneand DNA-binding mechanisms of the recombinant human estrogen receptor. Biochemistry 32, 6229-6236. https://doi.org/10.1021/bi00075a016
  21. Park, M. K., Kwon, H. Y., Ahn, W. S., Bae, S., Rhyu, M. R. and Lee, Y. (2009) Estrogen activities and the cellular effects of natural progesterone from wild yam extract in mcf-7 human breast cancer cells. Am. J. Chin. Med. 37, 159-167. https://doi.org/10.1142/S0192415X09006746
  22. Shang, Y. and Brown, M. (2002) Molecular determinants for the tissue specifi city of SERMs. Science 295, 2465-2468. https://doi.org/10.1126/science.1068537
  23. Smith, C. L. and O'Malley, B. W. (2004) Coregulator function: a key to understanding tissue specifi city of selective receptor modulators. Endocr. Rev. 25, 45-71. https://doi.org/10.1210/er.2003-0023
  24. Soto, A. M. and Sonnenschein, C. (1984) Mechanism of estrogen action on cellular proliferation: evidence for indirect and negative control on cloned breast tumor cells. Biochem. Biophys. Res. Commun. 122, 1097-1103. https://doi.org/10.1016/0006-291X(84)91204-X
  25. Soto, A. M. and Sonnenschein, C. (1985) The role of estrogens on the proliferation of human breast tumor cells (MCF-7). J. Steroid Biochem. 23, 87-94. https://doi.org/10.1016/0022-4731(85)90265-1
  26. Skliris, G. P., Leygue, E., Watson, P. H. and Murphy, L. C. (2008) Estrogen receptor alpha negative breast cancer patients: estrogen receptor beta as a therapeutic target. J. Steroid Biochem. Mol. Biol. 109, 1-10. https://doi.org/10.1016/j.jsbmb.2007.12.010
  27. Son, J. K., Lee, S. H., Nagarapu, L. and Jahng, Y. (2005) A simple synthesis of nordihydroguaiaretic acid and its analogues. Bull. Korean Chem. Soc. 26, 1117-1120. https://doi.org/10.5012/bkcs.2005.26.7.1117
  28. Wysowski, D. K., Honig, S. F. and Beitz, J. (2002) Uterine sarcoma associated with tamoxifen use. New Engl. J. Med. 346, 1832-1833. https://doi.org/10.1056/NEJM200206063462319
  29. Ward, H. A. and Kuhnle, G. G. (2010) Phytoestrogen consumption and association with breast, prostate and colorectal cancer in EPIC Norfolk. Arch. Biochem. Biophys. 501, 170-175. https://doi.org/10.1016/j.abb.2010.05.018
  30. Wen, D. X., Xu, Y. F., Mais, D. E., Goldman, M. E. and McDonnell, D. P. (1994) The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. Mol. Cell. Biol. 14, 8356-8364. https://doi.org/10.1128/MCB.14.12.8356

Cited by

  1. Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause vol.48, pp.3, 2016, https://doi.org/10.1007/s00726-015-2127-6
  2. Evaluation of Estrogenic Activity of Extract from the Herbal MixtureCynanchum wilfordiiHemsley, Phlomis umbrosa Turczaninow, andAngelica gigasNakai vol.33, pp.1, 2017, https://doi.org/10.5487/TR.2017.33.1.071
  3. Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis vol.8, pp.6, 2016, https://doi.org/10.3390/toxins8060162
  4. Characterization of Phase I and Phase II Hepatic Metabolism and Reactive Intermediates ofLarrea nitidaCav. and Its Lignan Compounds vol.31, pp.1, 2017, https://doi.org/10.1002/ptr.5742
  5. Isoguaiacins, Arylnaphthalene Types Identified as Novel Potent Estrogenic Signaling Molecules fromLarrea nitida vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10437
  6. Phytoestrogenic activity of blackcurrant (Ribes nigrum) anthocyanins is mediated through estrogen receptor alpha vol.59, pp.12, 2015, https://doi.org/10.1002/mnfr.201500479
  7. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation vol.480, pp.3, 2016, https://doi.org/10.1016/j.bbrc.2016.10.066
  8. Induction of Integrin Signaling by Steroid Sulfatase in Human Cervical Cancer Cells vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2016.155
  9. Spiroketones and a Biphenyl Analog from Stems and Leaves of Larrea nitida and Their Inhibitory Activity against IL-6 Production vol.23, pp.2, 2018, https://doi.org/10.3390/molecules23020302
  10. Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression vol.51, pp.3, 2018, https://doi.org/10.1590/1414-431x20175612
  11. Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2017.160
  12. Antitumor effects and mechanism of protein from Panax ginseng C. A. Meyer on human breast cancer cell line MCF-7 vol.15, pp.65, 2019, https://doi.org/10.4103/pm.pm_151_19
  13. Nordihydroguaiaretic Acid as a Novel Substrate and Inhibitor of Catechol O-Methyltransferase Modulates 4-Hydroxyestradiol-Induced Cyto- and Genotoxicity in MCF-7 Cells vol.26, pp.7, 2014, https://doi.org/10.3390/molecules26072060