References
- Bae, N. Y., Ahn, T. K., Chung, S. K., Oh, M. S., Ko, H. S., Oh, H. G., Park, G. H. and Yang, H. O. (2011) The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson's disease. J. Ethnopharmacol. 134, 313-322. https://doi.org/10.1016/j.jep.2010.12.016
- Baliga, M. S. and Dsouza, J. J. (2011) Amla(Emblica offi cinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur. J. Cancer Prev. 20, 225-239. https://doi.org/10.1097/CEJ.0b013e32834473f4
- Bao, X. X., Xie, B. S., Li, Q., Li, X. P., Wei, L. H. and Wang, J. L. (2012) Nifedipine induced autophagy through Beclin1 and mTOR pathway in endometrial carcinoma cells. Chin. Med. J. 125, 3120-3126
- Bollimuntha, S., Singh, B. B. and Shavali, S. (2005) TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J. Biol. Chem. 280, 2132-2140. https://doi.org/10.1074/jbc.M407384200
- Chang, C. L. and Lin, C. S. (2012) Phytochemical composition, antioxidant activity, and neuroprotective effect of Terminalia chebula Retzius extracts. Evid. Based Complement. Alternat. Med. 2012, 125247.
-
Chen, X. C., Fang, F., Zhu, Y. G., Chen, L. M., Zhou, Y. C. and Chen, Y. (2003) Protective effect of ginsenoside Rg1 on
$MPP^+$ -induced apoptosis in SH-SY5Y cells. J. Neural Transm. 110, 835-845. https://doi.org/10.1007/s00702-003-0005-y - Chen, Z., Lu, T., Yue, X., Wei, N., Jiang, Y., Chen, M., Ni, G., Liu, X. and Xu, G. (2010) Neuroprotective effect of ginsenoside Rb1 on glutamate-induced neurotoicity : With emphasis on autophagy. Neurosci. Lett. 482, 264-268. https://doi.org/10.1016/j.neulet.2010.07.052
- Choi, J. Y., Jang, E. H., Park, C. S. and Kang, J. H. (2005) Enhanced susceptibility to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity in high-fat diet induced obesity. Free Radic. Biol. Med. 38, 806-816. https://doi.org/10.1016/j.freeradbiomed.2004.12.008
- Dadakhujaev, S., Noh, H. S., Jung, E. J., Cha, J. Y., Baek, S. M., Ha, J. H. and Kim, D. R. (2010) Autophagy protects the rotenone-induced cell death in alpha-synuclein overexpressing SH-SY5Y cells. Neurosci. Lett. 472, 47-52 . https://doi.org/10.1016/j.neulet.2010.01.053
- Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909 . https://doi.org/10.1016/S0896-6273(03)00568-3
- Gurusamy, N., Lekli, I., Mukherjee, S., Ray, D., Ahsan, K., Gherghiceanu, M., Popescu, L. M. and Das, D. K. (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res. 86, 103-112. https://doi.org/10.1093/cvr/cvp384
- Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Ichiro, S., Okano, H. and Mizushima, N. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889. https://doi.org/10.1038/nature04724
- Han, J., Pan, X. Y., Xu, Y., Xiao, Y., An, Y., Tie, L., Pan, Y. and Li, X. J. (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8, 812-825. https://doi.org/10.4161/auto.19471
- Hay, N. and Sonenberg, N. (2004) Upstream and downstream of mTOR. Genes Dev. 18, 1926-1945. https://doi.org/10.1101/gad.1212704
- Kabeya, Y., Mizushima, N., Yamamoto, A., Satsuki, O. O., Ohsumi, Y. and Yoshimori, T. (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805-2812. https://doi.org/10.1242/jcs.01131
- Ko, H. S., Kim, Y. J., Amor, E. C., Lee, J. W., Kim, H. C., Kim, H. J. and Yang, H. O. (2011) Induction of autophagy by dimethyl cardamonin is associated with proliferative arrest in human colorectal carcinoma HCT116 and LOVO cells. J. Cell. Biochem. 112, 2471-2479. https://doi.org/10.1002/jcb.23171
- Larsen, K. E. and Sulzer, D. (2002) Autophagy in neurons: a review. Histol. Histopathol. 17, 897-908.
- Liang, J., Shao, S. H., Xu, Z. X., Hennessy, B., Ding, Z., Larrea, M., Kondo, S., Dumont, D. J., Gutterman, J. U., Walker, C. L., Slingerland, J. M. and Mills, G. B. (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell. Biol. 9, 218-224. https://doi.org/10.1038/ncb1537
- Liu, D., Si, H., Reynolds, K. A., Zhen, W., Jia, Z. and Dillon, J. S. (2007) Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 148, 3068-3076. https://doi.org/10.1210/en.2006-1378
-
Mathiasen, J. R., McKenna, B. A., Saporito, M. S., Ghadge, G. D., Roos, R. P., Holskin, B. P., Wu, Z. L., Trusko, S. P., Connors, T. C., Maroney, A. C., Thomas, B. A., Thomas, J. C. and Bozyczko- Coyne, D. (2004) Inhibition of mixed lineage kinase 3 attenuates
$MPP^+$ -induced neurotoxicity in SH-SY5Y cells. Brain Res. 1003, 86-97. https://doi.org/10.1016/j.brainres.2003.11.073 - Mauvezin, C., Orpinell, M., Francis, V. A., Mansilla, F., Duran, J., Ribas, V., Palacin, M., Boya, P., Teleman, A. A. and Zorzano, A. (2010) The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep. 11, 37-44. https://doi.org/10.1038/embor.2009.242
- Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E. L., Hall, D. H. and Levine, B. (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391. https://doi.org/10.1126/science.1087782
- Nowak, J., Archange, C., Joel, T. L., Pontarotti, P., Pe'busque, M., Vaccaro, M. I., Velasco, G., Dagorn, J. C. and Iovanna, J. L. (2009) The TP53INP2 protein is required for autophagy in mammalian cells. Mol. Biol. Cell 20, 870-881.
- Nowak, J. and Iovanna, J. L. (2009) TP53INP2 is the new guest at the table of self-eating. Autophagy 5, 383-384. https://doi.org/10.4161/auto.5.3.7698
- Pan, T., Kondo, S., Le, W. and Jankovic, J. (2008a) The role of autophagy- lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131, 1969-1978. https://doi.org/10.1093/brain/awm318
- Pan, T., Kondo, S., Zhu, W., Xie, W., Jankovic, J. and Le, W. (2008b) Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol. Dis. 32, 16-25. https://doi.org/10.1016/j.nbd.2008.06.003
- Pan, T., Rawal, P., Wu, Y., Xie, W., Jankovic, J. and Le, W. (2009) Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164, 541-551. https://doi.org/10.1016/j.neuroscience.2009.08.014
- Park, J. H., Joo, H. S., Yoo, K. Y., Shin, B. N., Kim, I. H., Lee, C. H., Choi, J. H., Byun, K., Lee, B., Lim, S. S., Kim, M. J. and Won, M. H. (2011) Extract from Terminalia chebula seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels. Neurochem. Res. 36, 2043-2050. https://doi.org/10.1007/s11064-011-0528-9
- Patschan, S., Chen, J. and Polotskaia, A. (2008) Lipid mediators of autophagy in stressinduced premature senescence of endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 294, 1119-1129. https://doi.org/10.1152/ajpheart.00713.2007
- Per, O. S. and Paul, B. G. (1982) 3-methyladenine: specifi c inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Nati. Acad. Sci. U.S.A. 79, 1889-1892. https://doi.org/10.1073/pnas.79.6.1889
- Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J. and Rubinsztein, D. C. (2006) Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet. 15, 1209-1216. https://doi.org/10.1093/hmg/ddl036
- Shin, H. Y., Chu, S. H., Lee, H. K. and Lee, J. W. (2011) mTOR inhibitor as a potential drug of age-related disease. Korean. J. Clin. Geri. 12, 149-159.
- Spowart, J. and Lum, J. J. (2010) Opening a new DOR to autophagy. EMBO. Rep. 11, 4-5. https://doi.org/10.1038/embor.2009.265
- Tanida, I., Ueno, T. and Kominami, E. (2004) LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503-2518. https://doi.org/10.1016/j.biocel.2004.05.009
- Underwood, B. R., Imarisio, S., Fleming, A., Rose, C., Krishna, G., Heard, P., Quick, M., Korolchuk, V. I., Renna, M., Sarkar, S., Garcia-Arencibia, M., O'Kane, C. J., Murphy, M. P. and Rubinsztein, D. C. (2010) Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum. Mol. Genet. 19, 3413-3429. https://doi.org/10.1093/hmg/ddq253
-
Virmani, A., Gaetani, F., Binienda, Z., Xu, A., Duhart, H. and Ali, S. F. (2004) Role of mitochondrial dysfunction in neurotoxicity of
$MPP^+$ : partial protection of PC12 cells by acetyl-L-carnitine. Ann. N. Y. Acad. Sci. 1025, 267-273. https://doi.org/10.1196/annals.1316.033 - Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V. and Elazar, Z. (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792-1802. https://doi.org/10.1038/emboj.2010.74
- Williams, T., Forsberg, L. J., Viollet, B. and Brenman, J. E. (2009) Basal autophagy induction without AMP-activated protein kinase under low glucose conditions. Autophagy 5, 1155-1165. https://doi.org/10.4161/auto.5.8.10090
- Wu, Y., Li, X., Zhu, J. X., Xie, W., Le, W., Fan, Z., Jankovic, J. and Pan, T. (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 19, 163-174. https://doi.org/10.1159/000328516
Cited by
- Rapamycin inhibits oxidative/nitrosative stress and enhances angiogenesis in high glucose-treated human umbilical vein endothelial cells: Role of autophagy vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.07.044
- Insulin involved Akt/ERK and Bcl-2/Bax pathways against oxidative damages in C6 glial cells vol.36, pp.1, 2016, https://doi.org/10.3109/10799893.2014.970276
- Terminalia chebula attenuates quinolinate-induced oxidative PC12 and OLN-93 cell death vol.14, 2017, https://doi.org/10.1016/j.msard.2017.03.012
- Protective effects of a herbal extract combination of Bupleurum falcatum , Paeonia suffruticosa , and Angelica dahurica against MPTP-induced neurotoxicity via regulation of nuclear receptor-related 1 protein vol.340, 2017, https://doi.org/10.1016/j.neuroscience.2016.10.029
- Anticancer Properties ofPhyllanthus emblica(Indian Gooseberry) vol.2015, 2015, https://doi.org/10.1155/2015/950890
- Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation vol.6, pp.1, 2016, https://doi.org/10.1038/srep25094
- Recent advances in autophagy-based neuroprotection vol.15, pp.2, 2015, https://doi.org/10.1586/14737175.2015.1002087
- Effects of triphala and guggul aqueous extracts on inhibition of protein fibrillation and dissolution of preformed fibrils vol.7, pp.33, 2017, https://doi.org/10.1039/C6RA28440J
- mTOR Signaling in Parkinson’s Disease vol.19, pp.1, 2017, https://doi.org/10.1007/s12017-016-8417-7
- A Review on Potential Mechanisms ofTerminalia chebulain Alzheimer’s Disease vol.2016, 2016, https://doi.org/10.1155/2016/8964849
- Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation vol.49, pp.8, 2016, https://doi.org/10.5483/BMBRep.2016.49.8.020
- Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells vol.59, pp.4, 2015, https://doi.org/10.1128/AAC.04092-14
- Nootropic and Anti-Alzheimer’s Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer’s Neuropathology pp.1559-1182, 2019, https://doi.org/10.1007/s12035-018-1420-2
- modulation of neurotransmitters pp.00223573, 2018, https://doi.org/10.1111/jphp.13007
- Ghrelin protects adult rat hippocampal neural stem cells from excessive autophagy during oxygen-glucose deprivation vol.65, pp.1, 2014, https://doi.org/10.1507/endocrj.ej17-0281
- Protective effects of extracellular polymeric substances from Aphanizomenon flos-aquae on neurotoxicity induced by local anesthetics vol.16, pp.4, 2014, https://doi.org/10.3892/etm.2018.6540
- Chinese Herbal Complex ‘Bu Shen Jie Du Fang' (BSJDF) Modulated Autophagy in an MPP + -Induced Cell Model of Parkinson's Disease vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/8920813
- A liquid chromatography–tandem mass spectrometry method for preclinical pharmacokinetics and tissue distribution of hydrolyzable tannins chebulinic acid and chebulagic acid in rats vol.33, pp.3, 2019, https://doi.org/10.1002/bmc.4425
- Effects of the Nintendo Wii training on balance rehabilitation and quality of life of patients with Parkinson’s disease: A systematic review and meta-analysis vol.44, pp.4, 2014, https://doi.org/10.3233/nre-192700
- Metal Chelation Therapy and Parkinson’s Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs vol.9, pp.7, 2014, https://doi.org/10.3390/biom9070269
- Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals vol.160, pp.None, 2014, https://doi.org/10.1016/j.phrs.2020.105069
- Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities vol.34, pp.10, 2014, https://doi.org/10.1002/ptr.6702
- Chebulinic acid inhibits MDA‐MB‐231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy vol.44, pp.12, 2020, https://doi.org/10.1002/cbin.11463
- Ferroptosis-Inhibitory Difference between Chebulagic Acid and Chebulinic Acid Indicates Beneficial Role of HHDP vol.26, pp.14, 2014, https://doi.org/10.3390/molecules26144300