DOI QR코드

DOI QR Code

Genetically Engineered Mouse Models for Drug Development and Preclinical Trials

  • Lee, Ho (Division of Convergence Technology, Graduate School of Cancer Science and Policy, National Cancer Center)
  • Received : 2014.06.17
  • Accepted : 2014.07.15
  • Published : 2014.07.31

Abstract

Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.

Keywords

References

  1. Abate-Shen, C. (2006) A new generation of mouse models of cancer for translational research. Clin. Cancer Res. 12, 5274-5276. https://doi.org/10.1158/1078-0432.CCR-06-0500
  2. Beard, C., Hochedlinger, K., Plath, K., Wutz, A. and Jaenisch, R. (2006) Efficient method to generate single-copy transgenic mice by site-specifi c integration in embryonic stem cells. Genesis 44, 23-28. https://doi.org/10.1002/gene.20180
  3. Begley, C. G. and Ellis, L. M. (2012) Drug development: Raise standards for preclinical cancer research. Nature 483, 531-533. https://doi.org/10.1038/483531a
  4. Belteki, G., Haigh, J., Kabacs, N., Haigh, K., Sison, K., Costantini, F., Whitsett, J., Quaggin, S. E. and Nagy, A. (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33, e51. https://doi.org/10.1093/nar/gni051
  5. Bolon, B. (2004) Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin. Pharmacol. Toxicol. 95, 154-161.
  6. Boxer, R. B., Jang, J. W., Sintasath, L. and Chodosh, L. A. (2004) Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577-586. https://doi.org/10.1016/j.ccr.2004.10.013
  7. Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J. and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91-92. https://doi.org/10.1038/nsb896
  8. Coumoul, X. and Deng, C. X. (2006) RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie 88, 637-643. https://doi.org/10.1016/j.biochi.2005.11.010
  9. Coumoul, X., Shukla, V., Li, C., Wang, R. H. and Deng, C. X. (2005) Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res. 33, e102. https://doi.org/10.1093/nar/gni100
  10. Dickins, R. A., McJunkin, K., Hernando, E., Premsrirut, P. K., Krizhanovsky, V., Burgess, D. J., Kim, S. Y., Cordon-Cardo, C., Zender, L. and Hannon, G. J. (2007) Tissue-specifi c and reversible RNA interference in transgenic mice. Nat. Genet. 39, 914-921. https://doi.org/10.1038/ng2045
  11. Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S. N., Hidalgo, O. F., Vanaclocha, V., Baylin, S. B. and Herman, J. G. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350-1354. https://doi.org/10.1056/NEJM200011093431901
  12. Frese, K. K. and Tuveson, D. A. (2007) Maximizing mouse cancer models. Nat. Rev. Cancer 7, 645-658.
  13. Gaj, T., Gersbach, C. A. and Barbas C. F. 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  14. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769. https://doi.org/10.1126/science.7792603
  15. Hansen, K. and Khanna, C. (2004) Spontaneous and genetically engineered animal models: use in preclinical cancer drug development. Eur. J. Cancer 40, 858-880. https://doi.org/10.1016/j.ejca.2003.11.031
  16. Hoefl ich, K. P., Gray, D. C., Eby, M. T., Tien, J. Y., Wong, L., Bower, J., Gogineni, A., Zha, J., Cole, M. J. and Stern, H. M. (2006) Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66, 999-1006. https://doi.org/10.1158/0008-5472.CAN-05-2720
  17. Jaisser, F. (2000) Inducible gene expression and gene modification in transgenic mice. J. Am. Soc. Nephrol. 11, S95-S100.
  18. Jonkers, J. and Berns, A. (2002) Conditional mouse models of sporadic cancer. Nat. Rev. Cancer 2, 251-265. https://doi.org/10.1038/nrc777
  19. Kats, L. M., Reschke, M., Taulli, R., Pozdnyakova, O., Burgess, K., Bha rgava, P., Straley, K., Karnik, R., Meissner, A. and Small, D. (2014) Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14, 329-341. https://doi.org/10.1016/j.stem.2013.12.016
  20. Kleinhammer, A., Deussing, J., Wurst, W. and Kuhn, R. (2011a) Conditional RNAi in mice. Methods 53, 142-150. https://doi.org/10.1016/j.ymeth.2010.08.003
  21. Kleinhammer, A., Wurst, W. and Kuhn, R. (2011b) Constitutive and conditional RNAi transgenesis in mice. Methods 53, 430-436. https://doi.org/10.1016/j.ymeth.2010.12.015
  22. Kleinhammer, A., Wurst, W. and Kuhn, R. (2013) Target validation in mice by constitutive and conditional RNAi. Methods Mol. Biol. 986, 307-323. https://doi.org/10.1007/978-1-62703-311-4_19
  23. Kucherlapati, R. (2012) Genetically modified mouse models for biomarker discovery and preclinical drug testing. Clin. Cancer Res. 18, 625-630. https://doi.org/10.1158/1078-0432.CCR-11-2021
  24. Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743-755. https://doi.org/10.1038/35093537
  25. Mackay, G. E. and West, J. D. (2005) Fate of tetraploid cells in 4n<->2n chimeric mouse blastocysts. Mech. Dev. 122, 1266-1281. https://doi.org/10.1016/j.mod.2005.09.001
  26. McCreath, K., Howcroft, J., Campbell, K., Colman, A., Schnieke, A. and Kind, A. (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066-1069. https://doi.org/10.1038/35016604
  27. McJunkin, K., Mazurek, A., Premsrirut, P. K., Zuber, J., Dow, L. E., Simon, J., Stillman, B. and Lowe, S. W. (2011) Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc. Natl. Acad. Sci. U.S.A. 108, 7113-7118. https://doi.org/10.1073/pnas.1104097108
  28. Ohta, H., Sakaide, Y. and Wakayama, T. (2008) Generation of mice derived from embryonic stem cells using blastocysts of different developmental ages. Reproduction 136, 581-587. https://doi.org/10.1530/REP-08-0184
  29. Paddison, P. J., Caudy, A. A. and Hannon, G. J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99, 1443-1448. https://doi.org/10.1073/pnas.032652399
  30. Palais, G., Nguyen Dinh Cat, A., Friedman, H., Panek-Huet, N., Millet, A., Tronche, F., Gellen, B., Mercadier, J. J., Peterson, A. and Jaisser, F. (2009) Targeted transgenesis at the HPRT locus: an effi cient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol. Genomics 37, 140-146. https://doi.org/10.1152/physiolgenomics.90328.2008
  31. Politi, K. and Pao, W. (2011) How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol. 29, 2273-2281. https://doi.org/10.1200/JCO.2010.30.8304
  32. Prawitt, D., Brixel, L., Spangenberg, C., Eshkind, L., Heck, R., Oesch, F., Zabel, B. and Bockamp, E. (2004) RNAi knock-down mice: an emerging technology for post-genomic functional genetics. ytogenet. Genome Res. 105, 412-421. https://doi.org/10.1159/000078214
  33. Premsrirut, P. K., Dow, L. E., Kim, S. Y., Camiolo, M., Malone, C. D., Miething, C., Scuoppo, C., Zuber, J., Dickins, R. A., Kogan, S. C., Shroyer, K. R., Sordella, R., Hannon, G. J. and Lowe, S. W. (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145-158. https://doi.org/10.1016/j.cell.2011.03.012
  34. Reinert, R. B., Kantz, J., Misfeldt, A. A., Poffenberger, G., Gannon, M., Brissova, M. and Powers, A. C. (2012) Tamoxifen-induced CreloxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7, e33529. https://doi.org/10.1371/journal.pone.0033529
  35. Richmond, A. and Su, Y. (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis. Model. Mech. 1, 78-82. https://doi.org/10.1242/dmm.000976
  36. Robles, A. I. and Varticovski, L. (2008) Harnessing genetically engineered mouse models for preclinical testing. Chem. Biol. Interact. 171, 159-164. https://doi.org/10.1016/j.cbi.2007.01.014
  37. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Zhang, M., Ihrig, M. M. and McManus, M. T. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401-406. https://doi.org/10.1038/ng1117
  38. Seibler, J., Kuter-Luks, B., Kern, H., Streu, S., Plum, L., Mauer, J., Kuhn, R., Bruning, J. C. and Schwenk, F. (2005) Single copy shRNA confi guration for ubiquitous gene knockdown in mice. Nucleic Acids Res. 33, e67. https://doi.org/10.1093/nar/gni065
  39. Seibler, J., Kleinridders, A., Kuter-Luks, B., Niehaves, S., Bruning, J. C. and Schwenk, F. (2007) Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res. 35, e54. https://doi.org/10.1093/nar/gkm122
  40. Seibler, J., Zevnik, B., Kuter-Luks, B., Andreas, S., Kern, H., Hennek, T., Rode, A., Heimann, C., Faust, N. and Kauselmann, G. (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12. https://doi.org/10.1093/nar/gng012
  41. Sharpless, N. E. and Depinho, R. A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741-754. https://doi.org/10.1038/nrd2110
  42. Singh, M. and Johnson, L. (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin. Cancer Res. 12, 5312-5328. https://doi.org/10.1158/1078-0432.CCR-06-0437
  43. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70-71. https://doi.org/10.1038/5007
  44. Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S. W. and Benezra, R. (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9-23. https://doi.org/10.1016/j.ccr.2006.10.019
  45. Sotillo, R., Schvartzman, J. M., Socci, N. D. and Benezra, R. (2010) Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436-440. https://doi.org/10.1038/nature08803
  46. Strathdee, D., Ibbotson, H. and Grant, S. G. (2006) Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS One 1, e4. https://doi.org/10.1371/journal.pone.0000004
  47. Suggitt, M. and Bibby, M. C. (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971-981.
  48. Sun, Y., Chen, X. and Xiao, D. (2007) Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim.Biophys. Sin. 39, 235-246. https://doi.org/10.1111/j.1745-7270.2007.00258.x
  49. Svoboda, P., Stein, P. and Schultz, R. M. (2001) RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 287, 1099-1104. https://doi.org/10.1006/bbrc.2001.5707
  50. van der Weyden, L., White, J. K., Adams, D. J. and Logan, D. W. (2011) The mouse genetics toolkit: revealing function and mechanism. Genome Biol. 12, 224. https://doi.org/10.1186/gb-2011-12-6-224
  51. Ventura, A., Meissner, A., Dillon, C. P., McManus, M., Sharp, P. A., Van Parijs, L., Jaenisch, R. and Jacks, T. (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. U.S.A. 101, 10380-10385. https://doi.org/10.1073/pnas.0403954101
  52. Wong, A. K. and Chin, L. (2000) An inducible melanoma model implicates a role for RAS in tumor maintenance and angiogenesis. Cancer Metastasis Rev. 19, 121-129. https://doi.org/10.1023/A:1026537423753
  53. Zambrowicz, B. P. and Sands, A. T. (2003) Knockouts model the 100 best-selling drugs--will they model the next 100? Nat. Rev. Drug Discov. 2, 38-51. https://doi.org/10.1038/nrd987
  54. Zuber, J., McJunkin, K., Fellmann, C., Dow, L. E., Taylor, M. J., Hannon, G. J. and Lowe, S. W. (2011a) Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79-83. https://doi.org/10.1038/nbt.1720
  55. Zuber, J., Shi, J., Wang, E., Rappaport, A. R., Herrmann, H., Sison, E. A., Magoon, D., Qi, J., Blatt, K., Wunderlich, M., Taylor, M. J., Johns, C., Chicas, A., Mulloy, J. C., Kogan, S. C., Brown, P., Valent, P., Bradner, J. E., Lowe, S. W. and Vakoc, C. R. (2011b) RNAi screen identifi es Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524-528. https://doi.org/10.1038/nature10334

Cited by

  1. The Use of Omic Technologies Applied to Traditional Chinese Medicine Research vol.2017, 2017, https://doi.org/10.1155/2017/6359730
  2. Application of the MechPeff model to predict passive effective intestinal permeability in the different regions of the rodent small intestine and colon vol.38, pp.2, 2017, https://doi.org/10.1002/bdd.2072
  3. Transgenic Mouse Models in Cancer Research vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00268
  4. Animal models for photodynamic therapy (PDT) vol.35, pp.6, 2014, https://doi.org/10.1042/bsr20150188
  5. Factors that influence response classifications in chemotherapy treated patient-derived xenografts (PDX) vol.7, pp.None, 2014, https://doi.org/10.7717/peerj.6586
  6. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux vol.145, pp.8, 2014, https://doi.org/10.1007/s00432-019-02973-5
  7. A Mouse Model to Assess STAT3 and STAT5A/B Combined Inhibition in Health and Disease Conditions vol.11, pp.9, 2014, https://doi.org/10.3390/cancers11091226
  8. Reproducible differentiation and characterization of neurons from mouse embryonic stem cells vol.7, pp.None, 2020, https://doi.org/10.1016/j.mex.2020.101073
  9. Investigation of the molecular biology underlying the pronounced high gene targeting frequency at the Myh9 gene locus in mouse embryonic stem cells vol.15, pp.3, 2014, https://doi.org/10.1371/journal.pone.0230126
  10. New Insight to Overcome Tumor Resistance: An Overview from Cellular to Clinical Therapies vol.11, pp.11, 2014, https://doi.org/10.3390/life11111131
  11. How necessary are animal models for modern drug discovery? vol.16, pp.12, 2014, https://doi.org/10.1080/17460441.2021.1972255
  12. An Afucosylated Anti-CD32b Monoclonal Antibody Induced Platelet-Mediated Adverse Events in a Human Fcγ Receptor Transgenic Mouse Model and Its Potential Human Translatability vol.185, pp.1, 2021, https://doi.org/10.1093/toxsci/kfab124