References
- Abate-Shen, C. (2006) A new generation of mouse models of cancer for translational research. Clin. Cancer Res. 12, 5274-5276. https://doi.org/10.1158/1078-0432.CCR-06-0500
- Beard, C., Hochedlinger, K., Plath, K., Wutz, A. and Jaenisch, R. (2006) Efficient method to generate single-copy transgenic mice by site-specifi c integration in embryonic stem cells. Genesis 44, 23-28. https://doi.org/10.1002/gene.20180
- Begley, C. G. and Ellis, L. M. (2012) Drug development: Raise standards for preclinical cancer research. Nature 483, 531-533. https://doi.org/10.1038/483531a
- Belteki, G., Haigh, J., Kabacs, N., Haigh, K., Sison, K., Costantini, F., Whitsett, J., Quaggin, S. E. and Nagy, A. (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33, e51. https://doi.org/10.1093/nar/gni051
- Bolon, B. (2004) Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin. Pharmacol. Toxicol. 95, 154-161.
- Boxer, R. B., Jang, J. W., Sintasath, L. and Chodosh, L. A. (2004) Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577-586. https://doi.org/10.1016/j.ccr.2004.10.013
- Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J. and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91-92. https://doi.org/10.1038/nsb896
- Coumoul, X. and Deng, C. X. (2006) RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie 88, 637-643. https://doi.org/10.1016/j.biochi.2005.11.010
- Coumoul, X., Shukla, V., Li, C., Wang, R. H. and Deng, C. X. (2005) Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res. 33, e102. https://doi.org/10.1093/nar/gni100
- Dickins, R. A., McJunkin, K., Hernando, E., Premsrirut, P. K., Krizhanovsky, V., Burgess, D. J., Kim, S. Y., Cordon-Cardo, C., Zender, L. and Hannon, G. J. (2007) Tissue-specifi c and reversible RNA interference in transgenic mice. Nat. Genet. 39, 914-921. https://doi.org/10.1038/ng2045
- Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S. N., Hidalgo, O. F., Vanaclocha, V., Baylin, S. B. and Herman, J. G. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350-1354. https://doi.org/10.1056/NEJM200011093431901
- Frese, K. K. and Tuveson, D. A. (2007) Maximizing mouse cancer models. Nat. Rev. Cancer 7, 645-658.
- Gaj, T., Gersbach, C. A. and Barbas C. F. 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
- Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769. https://doi.org/10.1126/science.7792603
- Hansen, K. and Khanna, C. (2004) Spontaneous and genetically engineered animal models: use in preclinical cancer drug development. Eur. J. Cancer 40, 858-880. https://doi.org/10.1016/j.ejca.2003.11.031
- Hoefl ich, K. P., Gray, D. C., Eby, M. T., Tien, J. Y., Wong, L., Bower, J., Gogineni, A., Zha, J., Cole, M. J. and Stern, H. M. (2006) Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66, 999-1006. https://doi.org/10.1158/0008-5472.CAN-05-2720
- Jaisser, F. (2000) Inducible gene expression and gene modification in transgenic mice. J. Am. Soc. Nephrol. 11, S95-S100.
- Jonkers, J. and Berns, A. (2002) Conditional mouse models of sporadic cancer. Nat. Rev. Cancer 2, 251-265. https://doi.org/10.1038/nrc777
- Kats, L. M., Reschke, M., Taulli, R., Pozdnyakova, O., Burgess, K., Bha rgava, P., Straley, K., Karnik, R., Meissner, A. and Small, D. (2014) Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14, 329-341. https://doi.org/10.1016/j.stem.2013.12.016
- Kleinhammer, A., Deussing, J., Wurst, W. and Kuhn, R. (2011a) Conditional RNAi in mice. Methods 53, 142-150. https://doi.org/10.1016/j.ymeth.2010.08.003
- Kleinhammer, A., Wurst, W. and Kuhn, R. (2011b) Constitutive and conditional RNAi transgenesis in mice. Methods 53, 430-436. https://doi.org/10.1016/j.ymeth.2010.12.015
- Kleinhammer, A., Wurst, W. and Kuhn, R. (2013) Target validation in mice by constitutive and conditional RNAi. Methods Mol. Biol. 986, 307-323. https://doi.org/10.1007/978-1-62703-311-4_19
- Kucherlapati, R. (2012) Genetically modified mouse models for biomarker discovery and preclinical drug testing. Clin. Cancer Res. 18, 625-630. https://doi.org/10.1158/1078-0432.CCR-11-2021
- Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743-755. https://doi.org/10.1038/35093537
- Mackay, G. E. and West, J. D. (2005) Fate of tetraploid cells in 4n<->2n chimeric mouse blastocysts. Mech. Dev. 122, 1266-1281. https://doi.org/10.1016/j.mod.2005.09.001
- McCreath, K., Howcroft, J., Campbell, K., Colman, A., Schnieke, A. and Kind, A. (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066-1069. https://doi.org/10.1038/35016604
- McJunkin, K., Mazurek, A., Premsrirut, P. K., Zuber, J., Dow, L. E., Simon, J., Stillman, B. and Lowe, S. W. (2011) Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc. Natl. Acad. Sci. U.S.A. 108, 7113-7118. https://doi.org/10.1073/pnas.1104097108
- Ohta, H., Sakaide, Y. and Wakayama, T. (2008) Generation of mice derived from embryonic stem cells using blastocysts of different developmental ages. Reproduction 136, 581-587. https://doi.org/10.1530/REP-08-0184
- Paddison, P. J., Caudy, A. A. and Hannon, G. J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99, 1443-1448. https://doi.org/10.1073/pnas.032652399
- Palais, G., Nguyen Dinh Cat, A., Friedman, H., Panek-Huet, N., Millet, A., Tronche, F., Gellen, B., Mercadier, J. J., Peterson, A. and Jaisser, F. (2009) Targeted transgenesis at the HPRT locus: an effi cient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol. Genomics 37, 140-146. https://doi.org/10.1152/physiolgenomics.90328.2008
- Politi, K. and Pao, W. (2011) How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol. 29, 2273-2281. https://doi.org/10.1200/JCO.2010.30.8304
- Prawitt, D., Brixel, L., Spangenberg, C., Eshkind, L., Heck, R., Oesch, F., Zabel, B. and Bockamp, E. (2004) RNAi knock-down mice: an emerging technology for post-genomic functional genetics. ytogenet. Genome Res. 105, 412-421. https://doi.org/10.1159/000078214
- Premsrirut, P. K., Dow, L. E., Kim, S. Y., Camiolo, M., Malone, C. D., Miething, C., Scuoppo, C., Zuber, J., Dickins, R. A., Kogan, S. C., Shroyer, K. R., Sordella, R., Hannon, G. J. and Lowe, S. W. (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145-158. https://doi.org/10.1016/j.cell.2011.03.012
- Reinert, R. B., Kantz, J., Misfeldt, A. A., Poffenberger, G., Gannon, M., Brissova, M. and Powers, A. C. (2012) Tamoxifen-induced CreloxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7, e33529. https://doi.org/10.1371/journal.pone.0033529
- Richmond, A. and Su, Y. (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis. Model. Mech. 1, 78-82. https://doi.org/10.1242/dmm.000976
- Robles, A. I. and Varticovski, L. (2008) Harnessing genetically engineered mouse models for preclinical testing. Chem. Biol. Interact. 171, 159-164. https://doi.org/10.1016/j.cbi.2007.01.014
- Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Zhang, M., Ihrig, M. M. and McManus, M. T. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401-406. https://doi.org/10.1038/ng1117
- Seibler, J., Kuter-Luks, B., Kern, H., Streu, S., Plum, L., Mauer, J., Kuhn, R., Bruning, J. C. and Schwenk, F. (2005) Single copy shRNA confi guration for ubiquitous gene knockdown in mice. Nucleic Acids Res. 33, e67. https://doi.org/10.1093/nar/gni065
- Seibler, J., Kleinridders, A., Kuter-Luks, B., Niehaves, S., Bruning, J. C. and Schwenk, F. (2007) Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res. 35, e54. https://doi.org/10.1093/nar/gkm122
- Seibler, J., Zevnik, B., Kuter-Luks, B., Andreas, S., Kern, H., Hennek, T., Rode, A., Heimann, C., Faust, N. and Kauselmann, G. (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12. https://doi.org/10.1093/nar/gng012
- Sharpless, N. E. and Depinho, R. A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741-754. https://doi.org/10.1038/nrd2110
- Singh, M. and Johnson, L. (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin. Cancer Res. 12, 5312-5328. https://doi.org/10.1158/1078-0432.CCR-06-0437
- Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70-71. https://doi.org/10.1038/5007
- Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S. W. and Benezra, R. (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9-23. https://doi.org/10.1016/j.ccr.2006.10.019
- Sotillo, R., Schvartzman, J. M., Socci, N. D. and Benezra, R. (2010) Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436-440. https://doi.org/10.1038/nature08803
- Strathdee, D., Ibbotson, H. and Grant, S. G. (2006) Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS One 1, e4. https://doi.org/10.1371/journal.pone.0000004
- Suggitt, M. and Bibby, M. C. (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971-981.
- Sun, Y., Chen, X. and Xiao, D. (2007) Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim.Biophys. Sin. 39, 235-246. https://doi.org/10.1111/j.1745-7270.2007.00258.x
- Svoboda, P., Stein, P. and Schultz, R. M. (2001) RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 287, 1099-1104. https://doi.org/10.1006/bbrc.2001.5707
- van der Weyden, L., White, J. K., Adams, D. J. and Logan, D. W. (2011) The mouse genetics toolkit: revealing function and mechanism. Genome Biol. 12, 224. https://doi.org/10.1186/gb-2011-12-6-224
- Ventura, A., Meissner, A., Dillon, C. P., McManus, M., Sharp, P. A., Van Parijs, L., Jaenisch, R. and Jacks, T. (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. U.S.A. 101, 10380-10385. https://doi.org/10.1073/pnas.0403954101
- Wong, A. K. and Chin, L. (2000) An inducible melanoma model implicates a role for RAS in tumor maintenance and angiogenesis. Cancer Metastasis Rev. 19, 121-129. https://doi.org/10.1023/A:1026537423753
- Zambrowicz, B. P. and Sands, A. T. (2003) Knockouts model the 100 best-selling drugs--will they model the next 100? Nat. Rev. Drug Discov. 2, 38-51. https://doi.org/10.1038/nrd987
- Zuber, J., McJunkin, K., Fellmann, C., Dow, L. E., Taylor, M. J., Hannon, G. J. and Lowe, S. W. (2011a) Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79-83. https://doi.org/10.1038/nbt.1720
- Zuber, J., Shi, J., Wang, E., Rappaport, A. R., Herrmann, H., Sison, E. A., Magoon, D., Qi, J., Blatt, K., Wunderlich, M., Taylor, M. J., Johns, C., Chicas, A., Mulloy, J. C., Kogan, S. C., Brown, P., Valent, P., Bradner, J. E., Lowe, S. W. and Vakoc, C. R. (2011b) RNAi screen identifi es Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524-528. https://doi.org/10.1038/nature10334
Cited by
- The Use of Omic Technologies Applied to Traditional Chinese Medicine Research vol.2017, 2017, https://doi.org/10.1155/2017/6359730
- Application of the MechPeff model to predict passive effective intestinal permeability in the different regions of the rodent small intestine and colon vol.38, pp.2, 2017, https://doi.org/10.1002/bdd.2072
- Transgenic Mouse Models in Cancer Research vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00268
- Animal models for photodynamic therapy (PDT) vol.35, pp.6, 2014, https://doi.org/10.1042/bsr20150188
- Factors that influence response classifications in chemotherapy treated patient-derived xenografts (PDX) vol.7, pp.None, 2014, https://doi.org/10.7717/peerj.6586
- Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux vol.145, pp.8, 2014, https://doi.org/10.1007/s00432-019-02973-5
- A Mouse Model to Assess STAT3 and STAT5A/B Combined Inhibition in Health and Disease Conditions vol.11, pp.9, 2014, https://doi.org/10.3390/cancers11091226
- Reproducible differentiation and characterization of neurons from mouse embryonic stem cells vol.7, pp.None, 2020, https://doi.org/10.1016/j.mex.2020.101073
- Investigation of the molecular biology underlying the pronounced high gene targeting frequency at the Myh9 gene locus in mouse embryonic stem cells vol.15, pp.3, 2014, https://doi.org/10.1371/journal.pone.0230126
- New Insight to Overcome Tumor Resistance: An Overview from Cellular to Clinical Therapies vol.11, pp.11, 2014, https://doi.org/10.3390/life11111131
- How necessary are animal models for modern drug discovery? vol.16, pp.12, 2014, https://doi.org/10.1080/17460441.2021.1972255
- An Afucosylated Anti-CD32b Monoclonal Antibody Induced Platelet-Mediated Adverse Events in a Human Fcγ Receptor Transgenic Mouse Model and Its Potential Human Translatability vol.185, pp.1, 2021, https://doi.org/10.1093/toxsci/kfab124