DOI QR코드

DOI QR Code

Silymarin Inhibits Cytokine-Stimulated Pancreatic Beta Cells by Blocking the ERK1/2 Pathway

  • Received : 2014.06.12
  • Accepted : 2014.06.24
  • Published : 2014.07.31

Abstract

We show that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibits cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$)-induced production of nitric oxide (NO) in the pancreatic beta cell line MIN6N8a. Immunostaining and Western blot analysis showed that silymarin inhibits iNOS gene expression. RT-PCR showed that silymarin inhibits iNOS gene expression in a dose-dependent manner. We also showed that silymarin inhibits extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) phosphorylation. A MEK1 inhibitor abrogated CM-induced nitrite production, similar to silymarin. Treatment of MIN6N8a cells with silymarin also inhibited CM-stimulated activation of NF-${\kappa}B$, which is important for iNOS transcription. Collectively, we demonstrate that silymarin inhibits NO production in pancreatic beta cells, and silymarin may represent a useful anti-diabetic agent.

Keywords

References

  1. Baker, M. S., Chen, X., Cao, X. C. and Kaufman, D. B. (2001) Expression of a dominant negative inhibitor of NF-kappaB protects MIN6 beta-cells from cytokine-induced apoptosis. J. Surg. Res. 97, 117-122. https://doi.org/10.1006/jsre.2001.6121
  2. Bektur, N. E., Sahin, E., Baycu, C. and Unver, G. (2013) Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice. Toxicol. Ind. Health, 1-12.
  3. Broniowska, K. A., Oleson, B. J. and Corbett, J. A. (2014) beta-cell responses to nitric oxide. Vitam. Horm. 95, 299-322. https://doi.org/10.1016/B978-0-12-800174-5.00012-0
  4. Cetkovic-Cvrlje, M. and Eizirik, D. L. (1994) TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 6, 399-406. https://doi.org/10.1016/1043-4666(94)90064-7
  5. Corbett, J. A., Wang, J. L., Hughes, J. H., Wolf, B. A., Sweetland, M. A., Lancaster, J. R., Jr. and McDaniel, M. L. (1992) Nitric oxide and cyclic GMP formation induced by interleukin 1 beta in islets of Langerhans. Evidence for an effector role of nitric oxide in islet dysfunction. Biochem. J. 287 ( Pt 1), 229-235. https://doi.org/10.1042/bj2870229
  6. Cristofalo, R., Bannwart-Castro, C. F., Magalhaes, C. G., Borges, V. T., Peracoli, J. C., Witkin, S. S. and Peracoli, M. T. (2013) Silibinin atte nuates oxidative metabolism and cytokine production by monocytes from preeclamptic women. Free Radic. Res. 47, 268-275. https://doi.org/10.3109/10715762.2013.765951
  7. Darville, M. I. and Eizirik, D. L. (1998) Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41, 1101-1108. https://doi.org/10.1007/s001250051036
  8. Dunnett, M. (1955) A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1096-1121. https://doi.org/10.1080/01621459.1955.10501294
  9. Eldor, R., Yeffet, A., Baum, K., Doviner, V., Amar, D., Ben-Neriah, Y., Christofori, G., Peled, A., Carel, J. C., Boitard, C., Klein, T., Serup, P., Eizirik, D. L. and Melloul, D. (2006) Conditional and specifi c NFkappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc. Natl. Acad. Sci. U.S.A. 103, 5072-5077. https://doi.org/10.1073/pnas.0508166103
  10. Flodstrom, M., Tyrberg, B., Eizirik, D. L. and Sandler, S. (1999) Reduced sensitivity of inducible nitric oxide synthase-deficient mice to multiple low-dose streptozotocin-induced diabetes. Diabetes 48, 706-713. https://doi.org/10.2337/diabetes.48.4.706
  11. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  12. Heimberg, H., Heremans, Y., Jobin, C., Leemans, R., Cardozo, A. K., Darville, M. and Eizirik, D. L. (2001) Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NFkappaB super-repressor prevents beta-cell apoptosis. Diabetes 50, 2219-2224. https://doi.org/10.2337/diabetes.50.10.2219
  13. Hogan, F. S., Krishnegowda, N. K., Mikhailova, M. and Kahlenberg, M. S. (2007). Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J. Surg. Res. 143, 58-65. https://doi.org/10.1016/j.jss.2007.03.080
  14. Huong, P. T., Lee, M. Y., Lee, K. Y., Chang, I. Y., Lee, S. K., Yoon, S. P., Lee, D. C. and Jeon, Y. J. (2012) Synergistic induction of iNOS by IFN-gamma and glycoprotein isolated from Dioscorea batatas. Korean J. Physiol. Pharmacol. 16, 431-436. https://doi.org/10.4196/kjpp.2012.16.6.431
  15. Jeon, Y. J., Yang, K. H., Pulaski, J. T. and Kaminski, N. E. (1996) Attenuation of inducible nitric oxide synthase gene expression by delta 9-tetrahydrocannabinol is mediated through the inhibition of nuclear factor- kappa B/Rel activation. Mol. Pharmacol. 50, 334-341.
  16. Kang, J. S., Jeon, Y. J., Kim, H. M., Han, S. H. and Yang, K. H. (2002) Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 302, 138-144. https://doi.org/10.1124/jpet.302.1.138
  17. Kim, S., Choi, J. H., Lim, H. I., Lee, S. K., Kim, W. W., Kim, J. S., Kim, J. H., Choe, J. H., Yang, J. H., Nam, S. J. and Lee, J. E. (2009a) Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine 16, 573-580. https://doi.org/10.1016/j.phymed.2008.11.006
  18. Kim, S., Choi, M. G., Lee, H. S., Lee, S. K., Kim, S. H., Kim, W. W., Hur, S. M., Kim, J. H., Choe, J. H., Nam, S. J., Yang, J. H., Lee, J. E. and Kim, J. S. (2009b) Silibinin suppresses TNF-alpha-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules 14, 4300-4311. https://doi.org/10.3390/molecules14114300
  19. Kvasnicka, F., Biba, B., Sevcik, R., Voldrich, M. and Kratka, J. (2003) Analysis of the active components of silymarin. J. Chromatogr. A 990, 239-245. https://doi.org/10.1016/S0021-9673(02)01971-4
  20. Larsen, L., Storling, J., Darville, M., Eizirik, D. L., Bonny, C., Billestrup, N. and Mandrup-Poulsen, T. (2005) Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia 48, 2582-2590. https://doi.org/10.1007/s00125-005-0039-9
  21. Letteron, P., Labbe, G., Degott, C., Berson, A., Fromenty, B., Delaforge, M., Larrey, D. and Pessayre, D. (1990) Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant. Biochem. Pharmacol. 39, 2027-2034. https://doi.org/10.1016/0006-2952(90)90625-U
  22. Li, M. H., Kothandan, G., Cho, S. J., Huong, P. T., Nan, Y. H., Lee, K. Y., Shin, S. Y., Yea, S. S. and Jeon, Y. J. (2010) Magnolol inhibits LPS-induced NF-kappaB/rel activation by blocking p38 kinase in murine macrophages. Korean J. Physiol. Pharmacol. 14, 353-358. https://doi.org/10.4196/kjpp.2010.14.6.353
  23. Matsuda, T., Ferreri, K., Todorov, I., Kuroda, Y., Smith, C. V., Kandeel, F. and Mullen, Y. (2005) Silymarin protects pancreatic beta-cells against cytokine-mediated toxicity: implication of c-Jun NH2-terminal kinase and janus kinase/signal transducer and activator of transcription pathways. Endocrinology 146, 175-185. https://doi.org/10.1210/en.2004-0850
  24. Mereish, K. A., Bunner, D. L., Ragland, D. R. and Creasia, D. A. (1991) Protection against microcystin-LR-induced hepatotoxicity by Silymarin: biochemistry, histopathology, and lethality. Pharm. Res. 8, 273-277. https://doi.org/10.1023/A:1015868809990
  25. Mokhtari, M. J., Motamed, N. and Shokrgozar, M. A. (2008) Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biol. Int. 32, 888-892. https://doi.org/10.1016/j.cellbi.2008.03.019
  26. Oh, S. J., Jung, S. P., Han, J., Kim, S., Kim, J. S., Nam, S. J., Lee, J. E. and Kim, J. H. (2013) Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cells. Oncol. Rep. 29, 1343-1348. https://doi.org/10.3892/or.2013.2252
  27. Oleson, B. J., Broniowska, K. A., Schreiber, K. H., Tarakanova, V. L. and Corbett, J. A. (2014) Nitric oxide induces ataxia telangiectasia mutated (ATM) protein-dependent gammaH2AX protein formation in pancreatic beta cells. J. Biol. Chem. 289, 11454-11464. https://doi.org/10.1074/jbc.M113.531228
  28. Pliskova, M., Vondracek, J., Kren, V., Gazak, R., Sedmera, P., Walterova, D., Psotova, J., Simanek, V. and Machala, M. (2005) Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology 215, 80-89. https://doi.org/10.1016/j.tox.2005.06.020
  29. Soto, C., Mena, R., Luna, J., Cerbon, M., Larrieta, E., Vital, P., Uria, E., Sanchez, M., Recoba, R., Barron, H., Favari, L. and Lara, A. (2004) Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Sci. 75, 2167-2180. https://doi.org/10.1016/j.lfs.2004.04.019
  30. Soto, C., Raya, L., Juarez, J., Perez, J. and Gonzalez, I. (2014) Effect of Silymarin in Pdx-1 expression and the proliferation of pancreatic beta-cells in a pancreatectomy model. Phytomedicine 21, 233-239. https://doi.org/10.1016/j.phymed.2013.09.008
  31. Takamura, T., Kato, I., Kimura, N., Nakazawa, T., Yonekura, H., Takasawa, S. and Okamoto, H. (1998) Transgenic mice overexpressing type 2 nitric-oxide synthase in pancreatic beta cells develop insulin-dependent diabetes without insulitis. J. Biol. Chem. 273, 2493-2496. https://doi.org/10.1074/jbc.273.5.2493
  32. Valenzuela, A. and Garrido, A. (1994) Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol. Res. 27, 105-112.
  33. Welsh, N. and Sandler, S. (1992) Interleukin-1 beta induces nitric oxide production and inhibits the activity of aconitase without decreasing glucose oxidation rates in isolated mouse pancreatic islets. Biochem. Biophys. Res. Commun. 182, 333-340. https://doi.org/10.1016/S0006-291X(05)80149-4
  34. Xie, H., Chiles, T. C. and Rothstein, T. L. (1993) Induction of CREB activity via the surface Ig receptor of B cells. J. Immunol. 151, 880-889.
  35. Xie, Q. W., Kashiwabara, Y. and Nathan, C. (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 4705-4708.
  36. Yamada, K., Otabe, S., Inada, C., Takane, N. and Nonaka, K. (1993) Nitric oxide and nitric oxide synthase mRNA induction in mouse islet cells by interferon-gamma plus tumor necrosis factor-alpha. Biochem. Biophys. Res. Commun. 197, 22-27. https://doi.org/10.1006/bbrc.1993.2435
  37. Youn, C. K., Park, S. J., Li, M. H., Lee, M. Y., Lee, K. Y., Cha, M. J., Kim, O. H., You, H. J., Chang, I. Y., Yoon, S. P. and Jeon, Y. J. (2013) Radi cicol inhibits iNOS expression in cytokine-stimulated pancreatic beta cells. Korean J. Physiol. Pharmacol. 17, 315-320. https://doi.org/10.4196/kjpp.2013.17.4.315
  38. Zhang, W., Hong, R. and Tian, T. (2013) Silymarin's protective effects and possible mechanisms on alcoholic fatty liver for rats. Biomol. Ther. 21, 264-269. https://doi.org/10.4062/biomolther.2013.020
  39. Zhao, J., Sharma, Y. and Agarwal, R. (1999) Signifi cant inhibition by the flavonoid antioxidant silymarin against 12-O-tetradecanoylphorbol 13-acetate-caused modulation of antioxidant and inflammatory enzymes, and cyclooxygenase 2 and interleukin-1alpha expression in SENCAR mouse epidermis: implications in the prevention of stage I tumor promotion. Mol. Carcinog. 26, 321-333. https://doi.org/10.1002/(SICI)1098-2744(199912)26:4<321::AID-MC11>3.0.CO;2-9

Cited by

  1. Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade vol.44, 2017, https://doi.org/10.1016/j.jnutbio.2017.02.015
  2. Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury vol.12, pp.2, 2016, https://doi.org/10.3892/etm.2016.3370
  3. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes vol.2015, 2015, https://doi.org/10.1155/2015/629863
  4. Silymarin impacts on immune system as an immunomodulator: One key for many locks vol.50, 2017, https://doi.org/10.1016/j.intimp.2017.06.030
  5. Silymarin Inhibits Morphological Changes in LPS-Stimulated Macrophages by Blocking NF-κB Pathway vol.19, pp.3, 2015, https://doi.org/10.4196/kjpp.2015.19.3.211
  6. Immunoregulatory Effects of Silymarin on Proliferation and Activation of Th1 Cells Isolated from Newly Diagnosed and IFN-ß1b-Treated MS Patients pp.1573-2576, 2018, https://doi.org/10.1007/s10753-018-0872-x
  7. Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy vol.3, pp.12, 2014, https://doi.org/10.1007/s42399-021-01034-8