Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.074

Genetically Engineered Mouse Models for Drug Development and Preclinical Trials  

Lee, Ho (Division of Convergence Technology, Graduate School of Cancer Science and Policy, National Cancer Center)
Publication Information
Biomolecules & Therapeutics / v.22, no.4, 2014 , pp. 267-274 More about this Journal
Abstract
Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.
Keywords
Genetically engineered mouse models; Preclinical trials; Drug discovery; Targeted transgenesis; RNAi mouse;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dickins, R. A., McJunkin, K., Hernando, E., Premsrirut, P. K., Krizhanovsky, V., Burgess, D. J., Kim, S. Y., Cordon-Cardo, C., Zender, L. and Hannon, G. J. (2007) Tissue-specifi c and reversible RNA interference in transgenic mice. Nat. Genet. 39, 914-921.   DOI   ScienceOn
2 Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S. N., Hidalgo, O. F., Vanaclocha, V., Baylin, S. B. and Herman, J. G. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350-1354.   DOI   ScienceOn
3 Frese, K. K. and Tuveson, D. A. (2007) Maximizing mouse cancer models. Nat. Rev. Cancer 7, 645-658.
4 Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769.   DOI
5 Hansen, K. and Khanna, C. (2004) Spontaneous and genetically engineered animal models: use in preclinical cancer drug development. Eur. J. Cancer 40, 858-880.   DOI   ScienceOn
6 Hoefl ich, K. P., Gray, D. C., Eby, M. T., Tien, J. Y., Wong, L., Bower, J., Gogineni, A., Zha, J., Cole, M. J. and Stern, H. M. (2006) Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66, 999-1006.   DOI   ScienceOn
7 Jaisser, F. (2000) Inducible gene expression and gene modification in transgenic mice. J. Am. Soc. Nephrol. 11, S95-S100.
8 Jonkers, J. and Berns, A. (2002) Conditional mouse models of sporadic cancer. Nat. Rev. Cancer 2, 251-265.   DOI   ScienceOn
9 Kats, L. M., Reschke, M., Taulli, R., Pozdnyakova, O., Burgess, K., Bha rgava, P., Straley, K., Karnik, R., Meissner, A. and Small, D. (2014) Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14, 329-341.   DOI   ScienceOn
10 Kleinhammer, A., Deussing, J., Wurst, W. and Kuhn, R. (2011a) Conditional RNAi in mice. Methods 53, 142-150.   DOI   ScienceOn
11 Kleinhammer, A., Wurst, W. and Kuhn, R. (2011b) Constitutive and conditional RNAi transgenesis in mice. Methods 53, 430-436.   DOI   ScienceOn
12 Kleinhammer, A., Wurst, W. and Kuhn, R. (2013) Target validation in mice by constitutive and conditional RNAi. Methods Mol. Biol. 986, 307-323.   DOI   ScienceOn
13 Abate-Shen, C. (2006) A new generation of mouse models of cancer for translational research. Clin. Cancer Res. 12, 5274-5276.   DOI   ScienceOn
14 Beard, C., Hochedlinger, K., Plath, K., Wutz, A. and Jaenisch, R. (2006) Efficient method to generate single-copy transgenic mice by site-specifi c integration in embryonic stem cells. Genesis 44, 23-28.   DOI   ScienceOn
15 Begley, C. G. and Ellis, L. M. (2012) Drug development: Raise standards for preclinical cancer research. Nature 483, 531-533.   DOI   ScienceOn
16 Belteki, G., Haigh, J., Kabacs, N., Haigh, K., Sison, K., Costantini, F., Whitsett, J., Quaggin, S. E. and Nagy, A. (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33, e51.   DOI   ScienceOn
17 Bolon, B. (2004) Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin. Pharmacol. Toxicol. 95, 154-161.
18 Boxer, R. B., Jang, J. W., Sintasath, L. and Chodosh, L. A. (2004) Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577-586.   DOI   ScienceOn
19 Coumoul, X. and Deng, C. X. (2006) RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie 88, 637-643.   DOI   ScienceOn
20 Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J. and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91-92.   DOI   ScienceOn
21 Coumoul, X., Shukla, V., Li, C., Wang, R. H. and Deng, C. X. (2005) Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res. 33, e102.   DOI   ScienceOn
22 Svoboda, P., Stein, P. and Schultz, R. M. (2001) RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 287, 1099-1104.   DOI   ScienceOn
23 Strathdee, D., Ibbotson, H. and Grant, S. G. (2006) Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS One 1, e4.   DOI
24 Suggitt, M. and Bibby, M. C. (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971-981.
25 Sun, Y., Chen, X. and Xiao, D. (2007) Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim.Biophys. Sin. 39, 235-246.   DOI   ScienceOn
26 van der Weyden, L., White, J. K., Adams, D. J. and Logan, D. W. (2011) The mouse genetics toolkit: revealing function and mechanism. Genome Biol. 12, 224.   DOI
27 Ventura, A., Meissner, A., Dillon, C. P., McManus, M., Sharp, P. A., Van Parijs, L., Jaenisch, R. and Jacks, T. (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. U.S.A. 101, 10380-10385.   DOI   ScienceOn
28 Wong, A. K. and Chin, L. (2000) An inducible melanoma model implicates a role for RAS in tumor maintenance and angiogenesis. Cancer Metastasis Rev. 19, 121-129.   DOI   ScienceOn
29 Zambrowicz, B. P. and Sands, A. T. (2003) Knockouts model the 100 best-selling drugs--will they model the next 100? Nat. Rev. Drug Discov. 2, 38-51.   DOI   ScienceOn
30 Zuber, J., McJunkin, K., Fellmann, C., Dow, L. E., Taylor, M. J., Hannon, G. J. and Lowe, S. W. (2011a) Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79-83.   DOI   ScienceOn
31 Zuber, J., Shi, J., Wang, E., Rappaport, A. R., Herrmann, H., Sison, E. A., Magoon, D., Qi, J., Blatt, K., Wunderlich, M., Taylor, M. J., Johns, C., Chicas, A., Mulloy, J. C., Kogan, S. C., Brown, P., Valent, P., Bradner, J. E., Lowe, S. W. and Vakoc, C. R. (2011b) RNAi screen identifi es Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524-528.   DOI   ScienceOn
32 Reinert, R. B., Kantz, J., Misfeldt, A. A., Poffenberger, G., Gannon, M., Brissova, M. and Powers, A. C. (2012) Tamoxifen-induced CreloxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7, e33529.   DOI
33 Richmond, A. and Su, Y. (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis. Model. Mech. 1, 78-82.   DOI   ScienceOn
34 Robles, A. I. and Varticovski, L. (2008) Harnessing genetically engineered mouse models for preclinical testing. Chem. Biol. Interact. 171, 159-164.   DOI   ScienceOn
35 Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Zhang, M., Ihrig, M. M. and McManus, M. T. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401-406.   DOI   ScienceOn
36 Seibler, J., Kuter-Luks, B., Kern, H., Streu, S., Plum, L., Mauer, J., Kuhn, R., Bruning, J. C. and Schwenk, F. (2005) Single copy shRNA confi guration for ubiquitous gene knockdown in mice. Nucleic Acids Res. 33, e67.   DOI   ScienceOn
37 Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70-71.   DOI   ScienceOn
38 Seibler, J., Kleinridders, A., Kuter-Luks, B., Niehaves, S., Bruning, J. C. and Schwenk, F. (2007) Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res. 35, e54.   DOI   ScienceOn
39 Sharpless, N. E. and Depinho, R. A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741-754.   DOI   ScienceOn
40 Singh, M. and Johnson, L. (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin. Cancer Res. 12, 5312-5328.   DOI   ScienceOn
41 Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S. W. and Benezra, R. (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9-23.   DOI   ScienceOn
42 Sotillo, R., Schvartzman, J. M., Socci, N. D. and Benezra, R. (2010) Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436-440.   DOI   ScienceOn
43 Kucherlapati, R. (2012) Genetically modified mouse models for biomarker discovery and preclinical drug testing. Clin. Cancer Res. 18, 625-630.   DOI   ScienceOn
44 Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743-755.   DOI   ScienceOn
45 Mackay, G. E. and West, J. D. (2005) Fate of tetraploid cells in 4n<->2n chimeric mouse blastocysts. Mech. Dev. 122, 1266-1281.   DOI   ScienceOn
46 Palais, G., Nguyen Dinh Cat, A., Friedman, H., Panek-Huet, N., Millet, A., Tronche, F., Gellen, B., Mercadier, J. J., Peterson, A. and Jaisser, F. (2009) Targeted transgenesis at the HPRT locus: an effi cient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol. Genomics 37, 140-146.   DOI   ScienceOn
47 McJunkin, K., Mazurek, A., Premsrirut, P. K., Zuber, J., Dow, L. E., Simon, J., Stillman, B. and Lowe, S. W. (2011) Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc. Natl. Acad. Sci. U.S.A. 108, 7113-7118.   DOI   ScienceOn
48 Ohta, H., Sakaide, Y. and Wakayama, T. (2008) Generation of mice derived from embryonic stem cells using blastocysts of different developmental ages. Reproduction 136, 581-587.   DOI   ScienceOn
49 Paddison, P. J., Caudy, A. A. and Hannon, G. J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99, 1443-1448.   DOI   ScienceOn
50 Politi, K. and Pao, W. (2011) How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol. 29, 2273-2281.   DOI   ScienceOn
51 Prawitt, D., Brixel, L., Spangenberg, C., Eshkind, L., Heck, R., Oesch, F., Zabel, B. and Bockamp, E. (2004) RNAi knock-down mice: an emerging technology for post-genomic functional genetics. ytogenet. Genome Res. 105, 412-421.   DOI   ScienceOn
52 Premsrirut, P. K., Dow, L. E., Kim, S. Y., Camiolo, M., Malone, C. D., Miething, C., Scuoppo, C., Zuber, J., Dickins, R. A., Kogan, S. C., Shroyer, K. R., Sordella, R., Hannon, G. J. and Lowe, S. W. (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145-158.   DOI   ScienceOn
53 Gaj, T., Gersbach, C. A. and Barbas C. F. 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405.   DOI   ScienceOn
54 Seibler, J., Zevnik, B., Kuter-Luks, B., Andreas, S., Kern, H., Hennek, T., Rode, A., Heimann, C., Faust, N. and Kauselmann, G. (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12.   DOI   ScienceOn
55 McCreath, K., Howcroft, J., Campbell, K., Colman, A., Schnieke, A. and Kind, A. (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066-1069.   DOI   ScienceOn