Novel Process to Fabricate 3D Porous Calcium Phosphate Scaffolds at Room Temperature

  • Yun, Hui-Suk (Engineering Ceramics Department, Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Park, Eui Kyun (School of Dentisty, Kyungpook National University) ;
  • Lim, Ji Won (School of Dentisty, Kyungpook National University)
  • Received : 2013.07.19
  • Accepted : 2013.11.08
  • Published : 2014.03.01

Abstract

Three-dimensional (3D) porous calcium phosphate ceramic scaffolds, composed of ${\alpha}$-tricalcium phosphate (TCP) and/or nano-TCP with well interconnected 3D pore structures, high porosity, good cellular interaction, and good mechanical properties, were fabricated by combining a cement-like reaction and paste extruding deposition (PED) system without a further sintering process at high temperature. The combination of ${\alpha}-TCP$ powder and ammonium phosphate dibasic $(NH_4)_2HPO_4$) solution, which caused the cement-like reaction, was selected to apply the extruding paste of PED and was successfully adapted by controlling the rheological properties of the paste with citric acid and nano-TCP powder. This simple and reproducible process may be potentially useful for preparing various ceramic scaffolds in tissue regeneration.

Keywords

References

  1. S. M. Best, A. E. Porter, E. S. Thian, J. Huang, J. Euro. Cera. Soc., 28, 1319 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.001
  2. S. V. Dorozhkin, Biomaterials, 31, 1465 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050
  3. S. V. Dorozhkin, Acta Biomaterialia, 6, 4457 (2010). https://doi.org/10.1016/j.actbio.2010.06.031
  4. V. Karageorgiou, D. Kaplan, Biomaterials, 26, 5474 (2005). https://doi.org/10.1016/j.biomaterials.2005.02.002
  5. K. Rezwan, Q. Z. Chen, J. J. Blaker, A. R. Boccaccini, Biomaterials, 27, 3431 (2006).
  6. D. W. Hutmacher, Biomaterials, 21, 2529 (2000). https://doi.org/10.1016/S0142-9612(00)00121-6
  7. S. J. Hollister, Nature Mater., 4, 518 (2005). https://doi.org/10.1038/nmat1421
  8. Q. Z. Chen, I. D. Thompson, A. R. Boccaccini, Biomaterials, 27, 2414 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.025
  9. M. P. Ginebra, M. Espanol, E. B. Montufar, R. A. Perez, G. Mestres, Acta Biomater., 8, 2863 (2010).
  10. G. B. M. Ribeiro, R. M. Trommer, L. A. dos Santos, C. P. Bergmann, Mater. Lett., 65, 275 (2011). https://doi.org/10.1016/j.matlet.2010.09.066
  11. B. Jokic, I. Stamenkovic, M. Zrilic, K. Obradovic-Djuricic, R. Petrovic, D. Janackovic, Mater. Lett., 74, 155 (2012). https://doi.org/10.1016/j.matlet.2012.01.081
  12. J. M. Taboas, R. D. Maddox, P. H. Krebsbach, S. J. Hollister, Biomaterials, 24, 181 (2003). https://doi.org/10.1016/S0142-9612(02)00276-4
  13. J. R. Woodard, A. J. Hilldore, S. K. Lan, C. J. Park, A. W. Morgan, J. A. C. Eurell, S. G. Clark, M. B. Wheeler, R. D. Jamison, A. J. W. Johnson, Biomaterials, 28, 45 (2007). https://doi.org/10.1016/j.biomaterials.2006.08.021
  14. H. S. Yun, S. E. Kim, Y. T. Hyun, Chem. Commun., 2139 (2007).
  15. I. K. Jun, Y. H. Koh, S. L. Lee, H. E. Kim, J. Mater. Sci: Mater. Med., 18, 1071 (2007).
  16. U. Gbureck, T. Holzel, U. Klammert, K. Wurzler, F. A. Muller, J. E. Barralet, Adv. Funct. Mater., 17, 3940 (2007). https://doi.org/10.1002/adfm.200700019
  17. S. V. Dorozhkin, Materials, 2, 221 (2009). https://doi.org/10.3390/ma2010221
  18. M. Bohner, U. Gbureck, J. E. Barralet, Biomaterials, 26, 6423 (2005). https://doi.org/10.1016/j.biomaterials.2005.03.049
  19. E. Vorndran, U. Klammert, A. Ewald, J. E. Barralet, U. Gbureck, Adv. Funct. Mater., 20, 1585 (2010). https://doi.org/10.1002/adfm.200901759
  20. H. S. Yun, S. H. Kim, D. Khang, J. Choi, H. Kim, M. Kang, Inter. J. Nanomedi., 6, 2521 (2011).
  21. F. Tamimi, Z. Sheikh, J. Barret, Acta Biomater., 8, 474 (2012). https://doi.org/10.1016/j.actbio.2011.08.005