DOI QR코드

DOI QR Code

Performance Analysis of Tri-gate FinFET for Different Fin Shape and Source/Drain Structures

Tri-gate FinFET의 fin 및 소스/드레인 구조 변화에 따른 소자 성능 분석

  • Choe, SeongSik (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kwon, Kee-Won (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, SoYoung (College of Information and Communication Engineering, Sungkyunkwan University)
  • 최성식 (성균관대학교 정보통신대학) ;
  • 권기원 (성균관대학교 정보통신대학) ;
  • 김소영 (성균관대학교 정보통신대학)
  • Received : 2014.01.28
  • Accepted : 2014.06.30
  • Published : 2014.07.25

Abstract

In this paper, the performance variations of tri-gate FinFET are analyzed for different fin shapes and source/drain epitaxy types using a 3D device simulator(Sentaurus). If the fin shape changes from a rectangular shape to a triangular shape, the threshold voltage increases due to a non-uniform potential distribution, the off-current decreases by 72.23%, and the gate capacitance decreases by 16.01%. In order to analyze the device performance change from the structural change of the source/drain epitaxy, we compared the grown on the fin (grown-on-fin) structure and grown after the fin etch (etched-fin) structure. 3-stage ring oscillator was simulated using Sentaurus mixed-mode, and the energy-delay products are derived for the different fin and source/drain shapes. The FinFET device with triangular-shaped fin with etched-fin source/drain type shows the minimum the ring oscillator delay and energy-delay product.

본 논문에서는 삼차원 소자 시뮬레이터(Sentaurus)를 이용하여 tri-gate FinFET의 fin과 소스/드레인 구조의 변화에 따른 소자의 성능을 분석하였다. Fin의 구조가 사각형 구조에서 삼각형 구조로 변함에 따라, fin 단면의 전위 분포의 차이로 문턱 전압이 늘어나고, off-current가 72.23% 감소하고 gate 커패시턴스는 16.01% 감소하였다. 소스/드레인 epitaxy(epi) 구조 변화에 따른 성능을 분석하기 위해, epi를 fin 위에 성장시킨 경우(grown-on-fin)와 fin을 etch 시키고 성장시킨 경우(etched-fin)의 소자 성능을 비교했다. Fin과 소스/드레인 구조의 변화가 회로에 미치는 영향을 살펴보기 위해 Sentaurus의 mixed-mode 시뮬레이션 기능을 사용하여 3단 ring oscillator를 구현하여 시뮬레이션 하였고, energy-delay product를 계산하여 비교하였다. 삼각형 fin에 etched 소스/드레인 epi 구조의 소자가 가장 작은 ring oscillator delay와 energy-delay product을 보였다.

Keywords

References

  1. The International Technology Roadmap for Semiconductors(ITRS), 2011
  2. Jihyun Kim, Aeri Son, Narae Jeong, and Hyungsoon Shin, "2D Quantum Effect Analysis of Nanoscale Double-Gate MOSFET," Journal of The Institute of Electronics Engineers of Korea, vol. 45SD, no. 10, pp. 15-22, Oct. 2008.
  3. K. W. Lee, SeokSoon Noh, NaHyun Kim, KeeWon Kwon, and SoYoung Kim, "Comparative study of analog performance of multiple fin tri-gate FinFETs," International Conference on Electronics, Information and Communication, 2012.
  4. Chi Woo Lee, Serena Yun, Chong Gun Yu, and Jong Tae Park, "A study on the device structure optimization of nano-scale MuGFETs," Journal of The Institute of Electronics Engineers of Korea, vol. 43SD, no. 4, pp.23-30, Apr. 2006.
  5. SeokSoon Noh, KeeWon Kwon, and SoYoung Kim, "Analysis of Process and Layout Dependent Analog Performance of FinFET Structures using 3D Device Simulator," Journal of The Institute of Electronics Engineers of Korea, vol. 50SD, no. 4, pp. 35-42, Apr. 2013. https://doi.org/10.5573/ieek.2013.50.4.035
  6. W. Yang and J. G. Fossum, "On the feasibility of nanoscale triple gate CMOS transistors," IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1159-1164, Jun. 2005. https://doi.org/10.1109/TED.2005.848109
  7. C. Auth et al., "A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors", Symposium on VLSI Technology, 12-14 June. 2012.
  8. C. H. Jan et al., "A 22nm SoC Platform Technology Featuring 3-D Tri-Gate and High-k/Metal Gate, Optimized for Ultra Low Power, High Performance and High Desity SoC Applications", Electron Device Meeting (IEDM), pp. 3.1.1-3.1.4, 10-13 Dec. 2012.
  9. N. Serra et al., "Experimental and physics-based modeling assessment of strain induced mobility enhancement in FinFETs", Electron Deivces Meeting (IEDM), pp. 1-4, 7-9 Dec. 2009.
  10. Lori Washington et al., "pMOSFET With 200% Mobility Enhancement Induced by Mutiple Stressors", IEEE Electron Device Letters, vol. 27, no. 6, pp. 511-513, June. 2006. https://doi.org/10.1109/LED.2006.875766
  11. Myung-Dong Ko et al., "Study on a Scaling Length Model for Tapered Tri-Gate FinFET Based on 3-D Simulation and Analytical Analysis", IEEE Trans. Electron Devices, vol. 60, no. 9, pp. 2721-2727, Sept. 2013. https://doi.org/10.1109/TED.2013.2272789
  12. Kehuey Wu et al., "Performance Advantage and Energy Saving of Triangular-Shaped FinFETs", Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 143-146, 3-5 Sept. 2013.
  13. Ohkura, Y. et al., "Analysis of gate currents through high-k dielectrics using a Monte Carlo device simulator", Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 67-70, 3-5 Sept. 2003.
  14. Kah-Wee Ang et al., "Strained n-MOSFET with embedded source/drain stressors and strain-transfer structure(STS) for enhanced transistor performance", IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 850-857, Mar. 2008. https://doi.org/10.1109/TED.2007.915053
  15. C. R. Manoj et al., "Impact of High-k Gate Dielectrics on the Device and Circuit Performance of Nanoscale FinFETs", IEEE Electron Device Letters, vol. 28, no. 4, pp. 295-297, April 2007. https://doi.org/10.1109/LED.2007.892365
  16. Tsung-Yang Liow et al., "N-channel (110)-sidewall strained FinFETs with silicon-carbon source and drain stressors and tensile capping layer", IEEE Electron Device Letters, vol. 28, no. 11, pp. 1014-1017, Nov. 2007. https://doi.org/10.1109/LED.2007.908495
  17. Kian-Ming Tan et al., "Strained p-channel FinFETs with extended pi-shaped silicon-germanium source and drain stressors", IEEE Electron Device Letters, vol. 28, no. 10, pp. 905-908, Oct. 2007. https://doi.org/10.1109/LED.2007.905406
  18. Synopsys Sentaurus Device User Guide Ver.H-2013.03.
  19. M. Garcia Bardon et al., "Layout-induced stress effects in 14nm & 10nm FinFETs and their impact on performance", in Proc. Symp. VLSI Technology, pp. 114-115, Jun. 2013.
  20. Elio Consoli et al., "Conditional Push-Pull Pulsed Latches with 726fJ.ps Energy-Delay Product in 65nm CMOS", in Proc. ISSCC, 2012, pp. 482-484.
  21. J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits : A Design Perspective, 2nd Edition, Prentice Hall, pp. 226, 2004.