DOI QR코드

DOI QR Code

Optimization of Spirogyra Flocculation Using Polyaluminium Chloride

Polyaluminium Chloride를 이용한 미세조류 Spirogyra의 응집 최적화

  • Baek, Jaewon (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Choi, Jong-Il (Department of Biotechnology and Bioengineering, Chonnam National University)
  • Received : 2014.03.17
  • Accepted : 2014.06.13
  • Published : 2014.06.30

Abstract

Flocculation is known one of the effective methods for harvesting microalgae. This study was aimed to optimize the flocculation condition for decreasing the amounts of flocculant and obtaining the highest yield of algal biomass. To achieve this goal, it was optimized the flocculant concentration, reaction pH and the concentration of cell density for harvest using response surface methodology (RSM). The flocculation of microalgae, Spirogyra varians, was carried out using inorganic flocculant polyaluminium chloride. By the RSM result, the optimal flocculation condition was calculated 5 ppm of polyaluminum chloride, pH 7.5 and 0.33 of optical cell density at $OD_{640}$. The obtained recovery yield of S. varians was 97.6% at the optimal condition.

Keywords

References

  1. Lund, H. (2007). Renewable energy strategies for sustainable development. Energy 32: 912-919. https://doi.org/10.1016/j.energy.2006.10.017
  2. Harun, R., M. Davidson, M. Doyle, R. Gopiraj, M.Danquah, and G. Forde (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy 35: 741-747. https://doi.org/10.1016/j.biombioe.2010.10.007
  3. Junginger, M., T. Bolkesjø, D. Bradley, P. Dolzan, A. Faaij, J. Heinimo, and M. D. Wit (2008). Developments in international bioenergy trade. Biomass and Bioenergy 32: 717-729. https://doi.org/10.1016/j.biombioe.2008.01.019
  4. Li, Y., M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero (2008). Biofuels from microalgae. Biotechnol. Prog. 24: 815-820.
  5. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  6. Dismukes, G. C., D. Carrieri, N. Bennette, G. M. Ananyev, and M. C. Posewitz (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19: 235-240. https://doi.org/10.1016/j.copbio.2008.05.007
  7. Lee, A. K., D. M. Lewis, and P. J. Ashman (2009). Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J. Appl. Psychol. 21: 559-567.
  8. Raja, R., S. Hemaiswarya, N. A. Kumar, S. Sridhar, and R.Rengasamy (2008). A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34: 77-88. https://doi.org/10.1080/10408410802086783
  9. Radakovits, R., R. E. Jinkerson, A. Darzins, and M. C. Posewitz (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9: 486-501. https://doi.org/10.1128/EC.00364-09
  10. Yoon, M., J. I. Choi, G. H. Kim, D. H. Kim, and D. H. Park (2013). Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation. Bioprocess Biosyst. Eng. 36: 765-774. https://doi.org/10.1007/s00449-013-0902-x
  11. Sukenik, A., D. Bilanovic, and G. Shelef (1988). Flocculation of microalgae in brackish and sea waters. Biomass 15: 187-199. https://doi.org/10.1016/0144-4565(88)90084-4
  12. Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A.Hoadley (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Renew. Sustain. Energ. Rev. 2: 012701. https://doi.org/10.1063/1.3294480
  13. Kwon, D. Y., C. K. Jung, K. B. Park, C. G. Lee, and J. W. Lee (2011). Flocculation characteristics of microalgae using chemical flocculants. KSBB J. 26: 143-150. https://doi.org/10.7841/ksbbj.2011.26.2.143
  14. Brennan, L. and P. Owende (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  15. Hossain, A. S., A. Salleh, A. N. Boyce, and M. Naqiuddin (2008). Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol. 4: 250. https://doi.org/10.3844/ajbbsp.2008.250.254
  16. Szklo, A. and R. Schaeffer (2006). Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition. Energ. 31: 2513-2522. https://doi.org/10.1016/j.energy.2005.11.001
  17. Somasundaran, P. (2006). Encyclopedia of surface and colloid science. 2nd ed., pp. 2588-2591. CRC Press, Taylor & Francis Group, NY, USA.
  18. Yoon, M., M. K. Kim, and G. H. Kim (2009) Conjugation process in Spirogyra varians monitored with FITC-lectins (Zygnemataceae, Chlorophyta). Algae 24: 39-45. https://doi.org/10.4490/ALGAE.2009.24.1.039
  19. Zheng, H., Z. Gao, J. Yin, X. Tang, X.Ji, and H. Huang (2012). Harvesting of microalgae by flocculation with poly ($\gamma$-glutamic acid). Bioresour. Technol. 112: 212-220. https://doi.org/10.1016/j.biortech.2012.02.086
  20. Shen, Y., Y. Cui, and W. Yuan (2013). Flocculation optimization of microalga Nannochloropsisoculata. Appl. Biochem. Biotechnol. 169: 2049-2063. https://doi.org/10.1007/s12010-013-0123-4
  21. Sanyano, N., P. Chetpattananondh, and S. Chongkhong (2013). Coagulation-flocculation of marine Chlorella sp. for biodiesel production. Bioresour. Technol. 147: 471-476. https://doi.org/10.1016/j.biortech.2013.08.080
  22. Kiran, B., A. Kaushik, and C. P. Kaushik (2007). Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem. Eng. J. 126: 147-153. https://doi.org/10.1016/j.cej.2006.09.002
  23. Huang, J., Z. H. Yang, G. M. Zeng, M. Ruan, H. Y. Xu, W. C. Gao, and H. M. Xie (2012). Influence of composite flocculant of PAC and MBFGA1 on residual aluminum species distribution. Chem. Eng. J. 191: 269-277. https://doi.org/10.1016/j.cej.2012.03.015
  24. Bradley, R. L. (1998). Renewable energy: Not cheap, not green? Strategic Planning for Energy and the Environment 17: 15-21. https://doi.org/10.1080/10485236.1998.10530522

Cited by

  1. Skin-Whitening and Anti-Wrinkle Effects of Bioactive Compounds Isolated from Peanut Shell Using Ultrasound-Assisted Extraction vol.26, pp.5, 2021, https://doi.org/10.3390/molecules26051231