Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.3.220

Optimization of Spirogyra Flocculation Using Polyaluminium Chloride  

Baek, Jaewon (Department of Biotechnology and Bioengineering, Chonnam National University)
Choi, Jong-Il (Department of Biotechnology and Bioengineering, Chonnam National University)
Publication Information
KSBB Journal / v.29, no.3, 2014 , pp. 220-224 More about this Journal
Abstract
Flocculation is known one of the effective methods for harvesting microalgae. This study was aimed to optimize the flocculation condition for decreasing the amounts of flocculant and obtaining the highest yield of algal biomass. To achieve this goal, it was optimized the flocculant concentration, reaction pH and the concentration of cell density for harvest using response surface methodology (RSM). The flocculation of microalgae, Spirogyra varians, was carried out using inorganic flocculant polyaluminium chloride. By the RSM result, the optimal flocculation condition was calculated 5 ppm of polyaluminum chloride, pH 7.5 and 0.33 of optical cell density at $OD_{640}$. The obtained recovery yield of S. varians was 97.6% at the optimal condition.
Keywords
Microalgae; Flocculation; Response surface methodology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hossain, A. S., A. Salleh, A. N. Boyce, and M. Naqiuddin (2008). Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol. 4: 250.   DOI
2 Szklo, A. and R. Schaeffer (2006). Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition. Energ. 31: 2513-2522.   DOI   ScienceOn
3 Lund, H. (2007). Renewable energy strategies for sustainable development. Energy 32: 912-919.   DOI   ScienceOn
4 Junginger, M., T. Bolkesjø, D. Bradley, P. Dolzan, A. Faaij, J. Heinimo, and M. D. Wit (2008). Developments in international bioenergy trade. Biomass and Bioenergy 32: 717-729.   DOI   ScienceOn
5 Li, Y., M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero (2008). Biofuels from microalgae. Biotechnol. Prog. 24: 815-820.
6 Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.   DOI   ScienceOn
7 Dismukes, G. C., D. Carrieri, N. Bennette, G. M. Ananyev, and M. C. Posewitz (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19: 235-240.   DOI   ScienceOn
8 Somasundaran, P. (2006). Encyclopedia of surface and colloid science. 2nd ed., pp. 2588-2591. CRC Press, Taylor & Francis Group, NY, USA.
9 Yoon, M., M. K. Kim, and G. H. Kim (2009) Conjugation process in Spirogyra varians monitored with FITC-lectins (Zygnemataceae, Chlorophyta). Algae 24: 39-45.   과학기술학회마을   DOI   ScienceOn
10 Zheng, H., Z. Gao, J. Yin, X. Tang, X.Ji, and H. Huang (2012). Harvesting of microalgae by flocculation with poly ($\gamma$-glutamic acid). Bioresour. Technol. 112: 212-220.   DOI   ScienceOn
11 Shen, Y., Y. Cui, and W. Yuan (2013). Flocculation optimization of microalga Nannochloropsisoculata. Appl. Biochem. Biotechnol. 169: 2049-2063.   DOI   ScienceOn
12 Sanyano, N., P. Chetpattananondh, and S. Chongkhong (2013). Coagulation-flocculation of marine Chlorella sp. for biodiesel production. Bioresour. Technol. 147: 471-476.   DOI   ScienceOn
13 Kiran, B., A. Kaushik, and C. P. Kaushik (2007). Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem. Eng. J. 126: 147-153.   DOI   ScienceOn
14 Huang, J., Z. H. Yang, G. M. Zeng, M. Ruan, H. Y. Xu, W. C. Gao, and H. M. Xie (2012). Influence of composite flocculant of PAC and MBFGA1 on residual aluminum species distribution. Chem. Eng. J. 191: 269-277.   DOI   ScienceOn
15 Yoon, M., J. I. Choi, G. H. Kim, D. H. Kim, and D. H. Park (2013). Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation. Bioprocess Biosyst. Eng. 36: 765-774.   DOI   ScienceOn
16 Bradley, R. L. (1998). Renewable energy: Not cheap, not green? Strategic Planning for Energy and the Environment 17: 15-21.   DOI
17 Lee, A. K., D. M. Lewis, and P. J. Ashman (2009). Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J. Appl. Psychol. 21: 559-567.
18 Raja, R., S. Hemaiswarya, N. A. Kumar, S. Sridhar, and R.Rengasamy (2008). A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34: 77-88.   DOI   ScienceOn
19 Sukenik, A., D. Bilanovic, and G. Shelef (1988). Flocculation of microalgae in brackish and sea waters. Biomass 15: 187-199.   DOI   ScienceOn
20 Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A.Hoadley (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Renew. Sustain. Energ. Rev. 2: 012701.   DOI
21 Kwon, D. Y., C. K. Jung, K. B. Park, C. G. Lee, and J. W. Lee (2011). Flocculation characteristics of microalgae using chemical flocculants. KSBB J. 26: 143-150.   과학기술학회마을   DOI   ScienceOn
22 Brennan, L. and P. Owende (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 14: 557-577.   DOI   ScienceOn
23 Harun, R., M. Davidson, M. Doyle, R. Gopiraj, M.Danquah, and G. Forde (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy 35: 741-747.   DOI   ScienceOn
24 Radakovits, R., R. E. Jinkerson, A. Darzins, and M. C. Posewitz (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9: 486-501.   DOI